((a → b) ∧ a) → b
(∧E) fst z :: a -> b 3From (1), conclude a (∧E) snd z :: a 4From (3) and (2), conclude b (→E) (fst z (snd z)) :: b 5From (1) and (4), conclude ((a → b) ∧ a) → b (→I) (disch. 1) \z -> (fst z (snd z)) :: (a -> b, a) -> b
(∧E) snd z :: a 4From (3) and (2), conclude b (→E) (fst z (snd z)) :: b 5From (1) and (4), conclude ((a → b) ∧ a) → b (→I) (disch. 1) \z -> (fst z (snd z)) :: (a -> b, a) -> b
(→E) (fst z (snd z)) :: b 5From (1) and (4), conclude ((a → b) ∧ a) → b (→I) (disch. 1) \z -> (fst z (snd z)) :: (a -> b, a) -> b
(→I) (disch. 1) \z -> (fst z (snd z)) :: (a -> b, a) -> b