
Next Tricks of the Wizards 1

Tricks of the Wizards

Mark Jason Dominus

Plover Systems Co.

 mjd-omniti-tricks+@plover.com

v1.8 (April, 2005)

If you don’t understand this, you may not get much out of this class:

 my $x = M->yup(13);
 print $x->{V}, "\n";

 sub M::yup { my ($p, $v) = @_; bless {V => $v}, $p }

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 2

What We’ll See
Magic

Dark hidden corners of Perl

Strange Incantations

Specifically

Globs

More globs

Tie

Source Filters

Powerful uses of these things

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 3

Prerequisites

You Must Already be Conversant with:

Packages

References

Objects

Modules

If not, so sorry!

Gildor says: ‘‘Do not meddle in the affairs of Wizards’’

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 4

Warning
These techniques are powerful but strange

They might make your programs hard to understand

‘Incantation’ or ‘Idiom’?

The Mighty Marvel Wizard says: ‘‘With great power comes great responsibility’’

Everything looks ’obfuscated’ the first time you see it

No complaints about obfuscation, please

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 5

Warning #2
Many of the techniques we’ll see directly violate strict refs in the grossest and
most blatant ways.

That is not a flaw in the methods.

strict refs is a safety feature.

If you want to learn to use the Wand of Fireballs, you have to shut off the automatic
sprinklers first.

No complaints about strict failures, please.

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 6

Principles Of Magic
Much magic is about making things appear to be what they’re not

First we have to understand what makes things appear as they are -- $foo for
example?

The Perl Symbol table:

Several parts:

The stash

The globs

The SVs, AVs, HVs, etc.

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 7

The Magic Path to Enlightenment
How is the value of $foo looked up?

Figure out package name

 Parse::RecDescent::foo --> Parse::RecDescent
 Person::new --> Person
 foo --> (Whatever is current)

Look in stash for package, locate key foo

Value is a glob. Extract SCALAR part of glob.

Result is a pointer to an SV

The SV is the value. (NULL pointer == undef)

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 8

The Magic Path to Enlightenment
The stash is a hash whose values are globs

The values are pointers attached to the knobs of the globs

Follow the knob of the glob in the hash for the stash

All of these steps are interesting.

We can benefit by enchanting any of them.

Globs first.

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 9

Making Things Appear to Be What They’re Not

Part I: Globs

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 10

Accept no substitutes
Despite the resemblance, globs have nothing to do with this:

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 11

Globs
A glob is the glue between the symbol tables and the actual values.

We’re going to spend a lot of time on globs

A glob has seven parts:

SCALAR

ARRAY

HASH

CODE

IO

FORMAT

GLOB

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 12

Globs
A glob has seven parts:

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 13

Globs
When perl resolves a variable name, it goes through the glob

Tinkering with the globs alters the way variables are looked up

Glob notation in Perl:

*foo

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 14

Operations with Globs
Most useful:

 *foo = REFERENCE

The thing referred to is attached to the appropriate glob knob

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 15

Operations with Globs
This performs installation into the symbol table

 *bar = \$foo;

 *bar = \$foo;

The glob assignment aliases the value

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 16

Aliasing
 *bar = \$foo;

Aliasing is different from assignment:

 $bar = $foo;

Assignment copies the SV and installs the copy into the symbol table

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 17

Aliasing
 *bar = \$foo;

Aliasing is different from assigning a reference:

 $bar = \$foo;

\$foo constructs a new SV with a reference value

The reference is installed into the symbol table

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 18

Exportation
 package Cookout;

 sub import {
 my $caller = caller;
 *{$caller . ’::grill’} = \&grill;
 }

 sub grill {
 ...
 }

This module exports the function grill into the calling package:

 use Cookout; # Calls Cookout->import()
 grill(’kebabs’); # Calls Cookout::grill(’kebabs’)

$caller . ’::grill’ turns into main::grill

Now you know how the Exporter works

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 19

Exportation
Here’s a slightly more full-featured exporter.

 package Rings;
 use Carp;

 %exports = map {$_ => 1} qw(Narya Nenya Vilya);

 sub import {
 my $caller = caller;
 my $package = shift;
 for my $name (@_) {
 unless ($exports{$name}) {
 croak("Module $package does not export &$name; aborting");
 }
 *{$caller . ’::’ . $name} = \&{’Rings::’ . $name};
 }
 }

 sub Narya { ... }
 sub Nenya { ... }
 sub Vilya { ... }

In the main program, calls like this:

 use Rings qw(Narya Nenya Fred);

Turn into this:

 Rings->import(qw(Narya Nenya Fred));

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 20

croak

Consider: main.pl

 #!/usr/bin/perl
 use Rings qw(Narya Nenya Fred);

And Rings.pm

 ...
 die "Module $package does not export &$name; aborting";
 ...

This yields

 ... does not export &Fred; aborting at line 379 of Rings.pm.

Not very useful

With croak instead of die

 ... does not export &Fred; aborting at line 2 of main.pl.

Similarly carp instead of warn

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 21

Forced Importing / Aliasing
Module VeryLongName contains function SomeFunction.

Instead of calling VeryLongName::SomeFunction many times:

 { local *F = \&VeryLongName::SomeFunction;

 F(...);
 }

A more realistic example:

 *ERR = \$DBI::errstr;

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 22

Forced Importing / Aliasing
Another real example: Module has a function you want, but the name is wrong:

 use Module ’function’;

Perhaps this is no good because it overlaps some other function that you need

For example:

 sub get { ... } # Clobbered by LWP::Simple::get
 use LWP::Simple; # Ouch --- exports ‘get’ by default

Do this instead:

 use LWP::Simple (); # Load, but don’t import anything
 BEGIN { *webget = \&LWP::Simple::get }

use Module () is a weird special case

It loads Module but does not call import at all

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 23

(No) Globs in Perl 6
Everyone seems to know that Perl 6 won’t have globs

(Even people who don’t know what globs are)

In Perl 5, globs are essential to exporting

How will exportation be handled in Perl 6?

Exportation is an aliasing operation

Perl 6 has an explicit aliasing operator :=

 $new := $old;
 @new := @old;
 %new := %old;

 @new := $oldref;
 %new := $oldref;

These will work even if new is a lexical variable

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 24

(No) Globs in Perl 6
For exportation to another package one will use:

 %Cookout::{’&grill’} := \&grill;

Stashes in Perl 6 are still hashes

They have names that end in ::

The key &grill in a stash is associated with the function object

The Exporter itself will do something like

 my $calling_package = caller().package;
 my %Exporter::To:: := %{$calling_package _ ’::’}
 ...
 %Exporter::To::{$name} := %Exporter::From::{$name};

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 25

Passing Filehandles
In The Beginning, filehandles weren’t first-class values

Consider code like this:

 open FH, ...;
 print FH ...;
 $z = <FH>;
 close FH;

Here FH is actually a literal string (a ’bareword’)

Almost as if you had written something like this:

 open "FH", ...;
 print "FH" ...;
 $z = <"FH">;
 close "FH";

All Perl’s I/O functions expect to get strings

They then resolve the string to a glob in the usual way

Then they extract the filehandle part of the glob

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 26

Passing Filehandles
This method for filehandles causes some problems

 open FH, ...;
 $data = read_block(FH);

 package My::IO;

 sub read_block {
 my $fh = shift;
 my $buf;
 read $fh, $buf, $BLOCKSIZE;
 $buf;
 }

Here the read function is given the string FH

But FH means My::IO::FH, not main::FH

Function doesn’t work

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 27

Passing Filehandles
 $data = read_block(FH); # Doesn’t work

 package My::IO;

 sub read_block {
 my $fh = shift;
 my $buf;
 read $fh, $buf, $BLOCKSIZE;
 $buf;
 }

Solution 1:

 $data = read_block(main::FH);

Solution 2:

 $data = read_block(*FH);

Perl’s I/O functions all will glob references

They then access the glob through the reference instead of through the stash

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 28

Passing Filehandles
Similarly:

 open my $fh, ...;

This now creates a new filehandle and stores it in $fh

What is actually created?

 print "$fh\n";
 GLOB(0x80f7b0c)

A glob reference

It’s a glob that’s not part of the symbol table

There are no aliasing effects on assignment

In Perl 6, open will simply return a filehandle object:

 my $fh = open $filepath : mode=>’rw’

It will probably stringify as something like IO(0x436c1d)

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 29

Globjects
You’re probably familiar with using a blessed hash as an object

Hash elements are like C++ class members

Many people suggest using an array for space and time efficiency

See Greg Bacon’s TPJ article

This trick was codified in 5.005’s pseudohash feature

Which was subsequently removed

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 30

Globjects
Base object on array? Or hash?

There are tradeoffs here

What if you need both? Use a glob!

A glob contains a hash and an array

And also a filehandle

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 31

Globjects
The biggest win is using the filehandle part

Perl accepts a glob reference anywhere it normally expects a filehandle

If your object is a blessed glob reference, people can use it like a filehandle

Let’s write an object that looks like a regular filehandle

But it supports a flush method that flushes any buffered data

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 32

Globjects
 package IO::Flushable;
 sub new {
 my ($package, $mode, $filename) = @_;
 open my $fh, $mode, $filename or return;
 bless $fh => $package;
 }

People can use this object just like a filehandle:

 my $fh = IO::flushable->new(">", "logfile") or die ...;
 print $fh "Blah blah blah\n";
 syswrite $fh, $logentry;
 close $fh;

It also closes automatically when it is destroyed.

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 33

Globjects
I promised a flush operation

$fh->flush() will flush the handle

 sub flush {
 my ($self) = @_; # $self is a GLOB reference
 my $ofh = select $self;
 my $rc;
 { local $| = 1;
 $rc = print $self "";
 }
 select $ofh;
 return $rc;
 }

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 34

Globjects
Here’s a more interesting example

It’s like a regular filehandle

But it has a remember operation that remembers the current file position

And a gobackto operation that goes back to a saved position

Changing positions is accomplished with Perl’s seek and tell functions

 my $pos = tell FH;
 seek FH, $pos, 0;

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 35

Globjects
The constructor is similar to the previous example:

 package IO::Remembers;
 sub new {
 my ($package, $filename) = @_;
 open my $fh, $filename or return;
 bless $fh => $package;
 }

Once again it can be used like a regular filehandle:

 my $fh = IO::Remembers->new(’input’);
 my $line = <$fh>;
 read $fh, $bytes, 1024;
 close $fh;

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 36

Globjects
Before we see remember and
gobackto, here’s some syntax

You can use a glob as if it were a
reference to any sort of thing.

For example:

 $N = 119;
 $v = ${*N};
 $r = \${*N};

$v now contains 119

$r now refers to $N so that $$r is 119.

In particular, if *g is a glob, %*g is its hash

*g->{key} looks up key in the hash

If $gr is a globref, *$gr is the glob

%*$gr is the glob’s hash

*$gr->{key} looks up key in the hash

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 37

Globjects
$fh->remember(’hippo’) will save the current position under the key hippo.

 sub remember {
 my ($self, $key) = @_; # $self is a GLOB reference
 *$self->{$key} = tell $self;
 }

$fh->gobackto(’hippo’) will return to the saved position.

 sub gobackto {
 my ($self, $key) = @_;
 seek $self, *$self->{$key}, 0;
 }

Future reads from the ‘filehandle’ will continue from the old position

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 38

Globjects
In Perl 6, this will be more straightforward

Filehandles will just be objects from class IO

Built-in functions like print and <> will be method calls

So just subclass IO and add the methods you want

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 39

Wrappers
Suppose we’d like to trace execution of the functions in a package

To do that, we’ll replace each function with a ’wrapper’

The wrapper will announce that the function is being called

Then call the real function

Basic idea:

 my $real_func = \&*$func_name;
 *$func_name = sub {
 print "$func_name(@_)\n";
 $real_func->(@_);
 };

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 40

Wrappers
 package Trace;

 sub import {
 my $caller = caller;
 my @functions = @_ ? @_ : all_functions($caller);
 for my $func_name (@functions) {
 my $real_func = \&*$func_name;
 *{$caller . "::$func_name"} = sub {
 print "$func_name(@_)\n";
 $real_func->(@_);
 };
 }
 }

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 41

Stash Walking
 my @functions = @_ ? @_ : all_functions($caller);

How can we get a list of all the functions in a package?

We’ll examine the stash directly

It’s just a hash

The stash for package RINGS is available as %RINGS::

Keys are names, values are globs

 sub all_functions {
 my $p = shift;
 my $h = \%{$p . "::"};
 my @result;
 while (my ($name, $glob) = each %$h) {
 if (defined &$glob) {
 push @result, $name;
 }
 }
 @result;
 }

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 42

Miscellaneous Applications of Globs

Read-Only Constants

 *PI = \3;

Now $PI is 3:

 $circum = 2 * $PI * $r;

But attempts to assign to $PI fail:

 $PI = 4;

 Modification of a read-only value attempted at ...

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 43

Miscellaneous Applications of Globs

Read-Only Constants, Continued

 sub PI () { 3 }

Now you can use PI and get 3:

 $circum = 2 * PI * $r;

PI is still read-only:

 PI = 3;

 Can’t modify constant item in scalar assignment at ...

() enables special function-call syntax

This incantation also enables inlining optimization

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 44

Read-Only Constants Continued
 use constant PI => 3,
 e => 2.71828182845904523536,
 emptylist => [];

constant.pm uses a combination of the read-only techniques and exportation:

 package constant;

 sub import {
 my $caller = caller;
 my $package = shift;
 while ($name = shift) {
 my $value = shift;
 *{$caller . ’::’ . $name} = sub () { $value };
 }
 }

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 45

A Templating System
This is a pretty big spell.

You have a hashful of variables, %VARS

You want to eval some code, and you want the environment for the eval to be the
variables defined by the hash.

For example, many templating modules need to do this

 my %VARS = (cust_id => 666,
 items => [’fish’, ’dog’, ’carrot’];
 amount => 142857.33,
);

 my $template = <<’EOM’; # Or read it from a file

 $name = db_lookup(’NAME’, $cust_id);
 $title = db_lookup(’TITLE’, $cust_id);
 $n = @items;
 $items = $n == 1 ? "item" : "$n_items items";

 return "Dear $title $name,
 You still owe me \$$amount for the following $items:
 @items\n";
 EOM
 my $result = my_eval($template, \%VARS);

 # Result:
 # Dear Mr. Gates,
 # You still owe me $142857.33 for the following 3 items:
 # fish dog carrot

Note: $cust_id, @items, and $amount implicitly defined by the hash

Note: $name, $title, $n, and $items_list don’t ‘leak out’

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 46

A Templating System

Three Parts to Our Strategy

1. Make up a new package

2. Install the hash variables into the new package

3. Do the eval in the new package

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 47

A Templating System

Make Up a New Package

Straightforward:

 my $fake_pack;
 BEGIN { $fake_pack = ’Fake00’}
 sub new_package {
 return "HashEval::" . $fake_pack++;
 }

Symbol::gensym already does something like this

After we’re done with a package, we can destroy it by using the
Symbol::delete_package function

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 48

A Templating System

Install Hash Variables Into the New Package

 sub package_install {
 my ($h, $p) = @_;
 my $n;
 while ($n = each %$h) {
 my $v = $h->{$n};
 *{$p . ’::’ . $n} = (ref $v ? $v : \$v);
 }
 }

Scalar context each just returns the keys one at a time

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 49

A Templating System

Do the eval in the New Package

 sub my_eval {
 my ($program, $hash) = @_;
 my $pack = new_package();
 package_install($hash => $pack);
 my $result = eval "package $pack; $program";
 return $result;
 }

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 50

A Templating System

Caveats

The eval’ed code is not actually confined to the new package:

 $/ = ’e’; # Sucker!

 $Security::ENABLED = 0; # Double sucker!

eval is still eval

 system("rm -rf /");

To prevent these, you need to use Safe.

The hash-into-new-package strategy is still valuable in conjunction with Safe.

 my $result = Safe->new->reval($program);

Text::Template is an extended example of this.

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 51

Making Things Appear to Be What They’re Not

Part II: Ties

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 52

Ties
A tied variable has its accesses mediated by a Perl object.

For example, if the scalar $s is tied to the object $o, then

 print $s; print $o->FETCH();

 $s = 119; $o->STORE(119);

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 53

Ties: Trivial (Annoying) Example

Make Something Look Strange

Tied variables are the ultimate in things that appear what they’re not:

 sub STORE {
 my ($self, $val) = @_;
 # Return value is ignored
 }

 sub FETCH {
 return "You are not cleared for access to that information.";
 }

Now what?

 $cia = "I’m a happy little bunny wabbit";
 $cia =~ tr/A-Z/a-z/;
 $cia .= "foo";

 print $cia;

 You are not cleared for access to that information.

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 54

How to Tie
Basic syntax:

 tie $VAR => PACKAGE, arguments;
 tie @VAR => PACKAGE, arguments;
 tie %VAR => PACKAGE, arguments;
 tie *VAR => PACKAGE, arguments;

Turn into

 PACKAGE->TIESCALAR(arguments);
 PACKAGE->TIEARRAY(arguments);
 PACKAGE->TIEHASH(arguments);
 PACKAGE->TIEHANDLE(arguments);

The TIEXXX function must construct and return an object to be associated

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 55

Tied Scalar Example
 use Sequence;
 tie $IDS => Sequence, 17; # $IDS is special now

 $id = $IDS; # $id is now 17
 $another = $IDS; # $another is now 18
 print $IDS, "\n"; # Prints 19
 push @ids, $IDS; # Pushes 20

 $IDS = 17; # Reset to 17

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 56

Tied Scalar Example
 package Sequence;

 sub TIESCALAR {
 my ($package, $start) = @_;
 $start = 1 unless defined $start;
 my $object = {VALUE => $start};
 bless $object => $package;
 }

 sub FETCH {
 my ($self) = @_;
 $self->{VALUE}++;
 }

 sub STORE {
 my ($self, $newvalue) = @_;
 $self->{VALUE} = $newvalue;
 }

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 57

Tied Hash Example
A hash with case-insensitive keys

 use Insensitive;
 tie %hash => Insensitive;

 $hash{SomeKey} = ’somevalue’;
 $hash{’John MacDonald’} = ’Author’;

 print $hash{somekey}, "\n"; # Prints ‘somevalue’
 print $hash{’John Macdonald’}, "\n"; # Prints ‘Author’

 $hash{SOMEKEY} = 57;
 print $hash{SomeKey}, "\n"; # Prints 57

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 58

Tied Hash Example
 package Insensitive;

 sub TIEHASH {
 my ($package) = @_;
 my $object = {};
 bless $object => $package;
 }

 sub STORE {
 my ($self, $key, $value) = @_;
 $self->{lc $key} = $value;
 }

 sub FETCH {
 my ($self, $key) = @_;
 $self->{lc $key};
 }

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 59

CGI.pm
CGI.pm provides a ->param() method for getting the submitted web form data

For compatibility with older packages, it will also set up an %in hash

%in is tied to call ->param() behind the scenes

 sub FETCH {
 return $_[0] if $_[1] eq ’CGI’;
 return undef unless defined $_[0]->param($_[1]);
 return join("\0",$_[0]->param($_[1]));
 }

Other methods similarly

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 60

Exporting a Tied Variable
You can tie any scalar, array, or hash variable.

It could be global or lexical

You can export it also

You can use this to write a module that places a magical variable into the package
that uses it.

Normally, use Package imports some functions in the program that says it

But you can make use Package mean to import some magical variables instead

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 61

Config.pm
Perl’s standard Config module supplies a magical %Config hash

It appears to be full of information about Perl’s configuration

 use Config;

 print "osname = $Config{osname}\n";
 print "install module manuals into = $Config{installman3dir}\n";

 osname = linux
 install module manuals into = /usr/local/man/man3

Actually %Config is a tied hash

 package Config;
 ...
 @EXPORT = qw(%Config);
 ...

 sub import {
 ...

 *{"$callpkg\::Config"} = \%Config;
 }

 ...

 tie %Config, ’Config’;

 1;

"$callpkg\::Config" is equivalent to $callpkg . "::Config"

"$callpkg::Config" means something else

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 62

Config.pm
Config.pm contains most of the configuration information as a giant string

The string is not parsed when you load the module

Instead, the FETCH method searches it for the configuration variable you asked for

Then it caches the result

FETCH also generates some of the configuration information dynamically

%Config is read-only:

 sub STORE { die "\%Config::Config is read-only\n" }

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 63

Magical Exporter Variable
This nifty trick was invented by Andrew Pimlott

Beginners want to say this:

 $salary = 43_000;
 print "After your raise, you will make $salary*1.06.\n";

But it doesn’t work:

 After your raise, you will make 43000*1.06.

Because, of course, expressions aren’t evalauted inside of strings.

...or are they?

 @s = (1, 4, 9, 16, 25, 36);
 print "$s[(2+7-1*3)/2]\n"; # Prints 16

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 64

Exporting a Magical Variable
 package Eval;

 sub import {
 my ($package, $name) = @_;
 $name = ’Eval’ unless defined $name;
 my %magical_hash;
 tie %magical_hash => Eval;
 my $caller = caller;

 *{$caller . ’::’ . $name} = \%magical_hash;
 }

There’s that magic glob again.

 sub TIEHASH {
 my $self = \’dummy’;
 bless $self => ’Eval’;
 }

use Eval now calls Eval::import

import creates and ties a hash, which it exports back to the caller

When the caller examines the data in the hash, Eval::FETCH is called

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 65

Exporting a Magical Variable
Here’s Eval::FETCH

 sub FETCH {
 my ($self, $key) = @_;
 $key; # Do NOTHING!
 }

What was that all about?

 use Eval;

 $salary = 43_000;
 print "After your raise, you will make $Eval{$salary*1.06}.\n";

 After your raise, you will make 45580.

If you don’t like the syntax, you can change it a little:

 use Eval => ’:’;

 $salary = 43_000;
 print "After your raise, you will make $:{$salary*1.06}.\n";

 After your raise, you will make 45580.

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 66

Magical Exporter Variable
Magic hash is not limited to evaluation:

 package Format_Money;

 sub FETCH {
 my ($dummy, $amount) = @_;
 my ($dollars, $cents) = split /\./, sprintf("%.2f", $amount);
 1 while $dollars =~ s/^([-+]?\d+)(\d{3})/$1,$2/; # FAQ
 "\$$dollars.$cents";
 }

Now:

 use Format_Money;

 $salary = 43_000;
 print "After your raise, you will make $Money{$salary*1.06}.\n";

 After your raise, you will make $45,580.00

Also use for automatic URL character escaping (for example)

Also see Interpolation module

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 67

Tied Arrays
It’s easy to make an array that mirrors the contents of a file

 tie @FILE, ’MirrorFile’, $filename or die ...;

Then

 print $FILE[13]; # Print line 13

 for (@FILE) {
 if (/something/) { ... }
 }

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 68

Tied Arrays
 package MirrorFile;

 sub TIEARRAY {
 my ($package, $filename) = @_;
 open my $fh, "<", $filename or return;
 my $self = { FH => $fh, FILE => $filename, CACHE => [] };
 bless $self => $package;
 }

 sub FETCH {
 my ($self, $lineno) = @_;
 return $self->{CACHE}[$lineno]
 if defined $self->{CACHE}[$lineno];

 my $fh = $self->{FH};
 while (<$fh>) {
 push @{$self->{CACHE}}, $_;
 return $_ if $#{$self->{CACHE}} == $lineno;
 }
 return;
 }

 sub FETCHSIZE {
 my ($self) = @_;
 my $fh = $self->{FH};
 push @{$self->{CACHE}}, <$fh>;
 scalar @{$self->{CACHE}};
 }

Supporting STORE is quite difficult

See Tie::File for many details

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 69

Tied Filehandles
To tie a handle, tie the glob in which it resides:

 tie *FH => ’Package’, ...;

Tied handle objects must support several methods:

 CLOSE
 GETC
 PRINT
 PRINTF
 READ (for ’read’)
 READLINE (for ’<>’)
 WRITE (for ’syswrite’)

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 70

Tied Filehandles
For example, suppose you’d like to trap all STDOUT output in a file

But also send it to STDOUT as usual

 package TeeSTDOUT;

 sub import {
 my ($package, @outfiles) = @_;
 open REAL_STDOUT, ">&STDOUT" or die ...;
 my @handles;
 for my $outfile (@outfiles) {
 open my $fh, ">", $outfile or die ...;
 push @handles, $fh;
 }
 tie *STDOUT => ’TeeSTDOUT’, \@handles;
 }

 sub TIEHANDLE {
 my ($package, $fhs) = @_;
 bless $fhs => $package;
 }

 sub PRINT {
 my ($fhs, $string) = @_;
 for my $outhandle (@$fhs, *REAL_STDOUT) {
 print $outhandle $string;
 }
 }

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 71

Tied Filehandles
Suppose you don’t like the opendir/readdir interface to directories

Why not a regular filehandle?

Then you could do:

 use Dir;
 my $dh = Dir->open(".") or die ...;
 while (<$dh>) {
 # Do something with the filename in $_
 }
 close $dh;

We’ll do this by tying the handle in $dh, which will allow us to overload the <...>
operator on it

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 72

Tied Filehandles
 package Dir;

 sub open {
 my ($package, $dir) = @_;
 opendir my $dh ,$dir or return;
 local *FH;
 tie *FH => ’Dir’, $dh, $dir;
 return *FH;
 }

 sub TIEHANDLE {
 my ($class, $dirhandle, $dirname) = @_;
 my $self = { DH => $dirhandle, NAME => $dirname };
 bless $self => $class;
 }

 sub READLINE {
 my ($self) = @_;
 readdir($self->{DH});
 }

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 73

Tied Filehandles
 sub READLINE {
 my ($self) = @_;
 readdir($self->{DH});
 }

Or perhaps you would prefer that <$dh> returns an object representing the directory
entry:

 sub READLINE {
 my ($self) = @_;
 my $file = readdir($self->{DH});
 my $fullname = "$self->{DIRNAME}/$file";
 my @statinfo = stat($fullname);
 return unless @statinfo;
 return Dir::Statinfo->new(FULLNAME => $fullname,
 BASENAME => $file,
 STATINFO => \@statinfo);
 }

And then use it like this:

 while (<$dh>) {
 print $_->fullname, " is a ", $_->filetype;

 print " containing ", $_->size, " bytes"
 if $_->filetype eq ’plain file’;

 print " linking to ", $_->readlink
 if $_->filetype eq ’symbolic link’;

 print "\n";
 }

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 74

Missing tie Methods
If you assign to a tied variable and you don’t have a STORE method defined, you’ll
get a fatal error.

The standard Tie::StdScalar, Tie::StdArray, and Tie::StdHash classes
provide reasonable defaults.

But for simple behavior, an easy thing to do is

 sub unimplemented { }

or

 # Load ‘Carp’ when needed
 sub forbidden {
 require Carp;
 Carp::croak("Operation not permitted on tied hash");
 }

 for $name (qw(STORE DELETE CLEAR FIRSTKEY NEXTKEY)) {
 *{$name} = \&forbidden;
 }

There’s that magic glob again.

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 75

The Mother of All Bizarre tie Tricks
Some badly-designed library subroutine reads from or writes to a certain variable

You wish it

read from a file

wrote to a database

called a callback function

etc. etc. etc.

instead.

Solution: Tie the variable.

Now it does call a callback function instead

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 76

The Mother of All Bizarre tie Tricks
Best application: Tied filehandle.

 do_something(...);

And then to your dismay, do_domething prints a lot of blather on the STDOUT

And you cannot get it to shut up

Moreover, you want the program to examine the error log for diagnostics

So tie STDOUT:

 { my $output;
 tie *STDOUT => ’TrapOutput’, \$output;
 do_something(); # Blessed silence
 untie *STDOUT;
 # Now examine $output
 }

 sub TrapOutput::TIEHANDLE {
 my ($class, $var) = @_;
 bless $var, $class;
 }

 sub TrapOutput::PRINT {
 my ($self, $string) = @_;
 $$self .= $string;
 }

Final remark: ArrayHashMonster may amaze and delight you

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 77

Making Things Appear to Be What They’re Not

Part III: Filters

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 78

What’s a Filter?
A filter gets the Perl source code before the parser does

It can transform the code any way it wants to

Then it hands the result to Perl

For example:

The source code file might be compressed

A filter can uncompress it before Perl sees it

The source code file might be encrypted

A filter can decrypt it before Perl sees it

The source code file might contain non-Perl features like macros

A filter can translate these to Perl before Perl sees it

Filtering is described in the beautifully-written perlfilter man page

Much of this work was done by Paul Marquess

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 79

Filter::Simple

The easy way to do filtering is with Filter::Simple

We’ll build a module that understands rot13-scrambled source code

Rot13:

 abcdefghijklm nopqrstuvwxyz ABCDEFGHIJKLM NOPQRSTUVWXYZ
 nopqrstuvwxyz abcdefghijklm NOPQRSTUVWXYZ ABCDEFGHIJKLM

Our test program looks like this:

 use Rot13;

 zl $f = "Uryyb, jbeyq\a";
 $| = 1;
 sbe (0 .. yratgu($f)) {
 cevag fhofge($f, $_, 1);
 fyrrc 1 vs enaq() < .5;
 }

 no Rot13;

 print "All done!\n";

And in fact this works as written, and produces the output:

 Hello, world
 All done!

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 80

Filter::Simple

The magic, of course, is in the Rot13 module:

 package Rot13;
 use Filter::Simple;

 FILTER {
 tr/A-Za-z/N-ZA-Mn-za-m/;
 };

 1;

It really couldn’t be any simpler

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 81

Filter::Util::Call

The filter interface is very complicated

Filter::Simple is based on Filter::Util::Call

Which in turn was invented as a simplified interface

That’s why software is great

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 82

Filter::Util::Call

Here’s a skeleton usage:

 package Rot13 ;

 use Filter::Util::Call ;

 sub import
 {
 my($type, @arguments) = @_ ;
 my $result = "";

 filter_add(
 sub
 {
 my $status = filter_read() ;
 if ($status >= 0) {
 tr/A-Za-z/N-ZA-Mn-za-m/;
 }
 return $status;
 })
 }

 1 ;

A filtering module should provide an import which calls filter_add

filter_add sets up the filter, which calls filter_read

filter_read places a line of code into $_

The filter modifies $_ and returns

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 83

Filter::Util::Call

The filter on the previous slide does not honor no Rot13

And how could it?

The filter itself gets the no Rot13 before the compiler does!

However, it’s easy to make it honor ab Ebg13; directives:

 sub unimport {
 warn "Unimport...\n";
 filter_del();
 }

Now the filter gets the ab Ebg13; line

Rot13s it to no Rot13;

Returns it to the compiler

The compiler compiles the line and calls Rot13::unimport

unimport deletes the filter

The parsing and compilation process continues as usual

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 84

Filter::Util::Call

The previous version supports ab Ebg13; but not no Rot13;

For that we have to be a little more devious:

 ...
 if ($status >= 0) {
 if (/^\s* no \s+ Rot13 \s* ; # "no Rot13;"
 \s* (?: #.*)? $ # Optional WS or comment
 /x) {
 return $status;
 }
 tr/A-Za-z/N-ZA-Mn-za-m/;
 }
 ...

We examine the line for no Rot13; before we give it to the compiler

If so, we return the line without rot13ing it

We could also have called filter_del() directly

Filter::Simple does this automatically

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 85

Filter::Util::Call

 ...
 if ($status >= 0) {
 if (/^\s* no \s+ Rot13 \s* ; # "no Rot13;"
 \s* (?: #.*)? $ # Optional WS or comment
 /x) {
 return $status;
 }
 tr/A-Za-z/N-ZA-Mn-za-m/;
 }
 ...

Note that this won’t pick up a line like this one:

 no Rot13; print "I like pie.\n";

But it will pick this up:

 $z = qq{
 no Rot13;
 };

You just have to hope that nothing like that comes along

In general, source filtering is based on hopes like this one

You can write a filter that works most of the time

But faced with sufficiently weird code, it will break

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 86

"Only perl can parse Perl"
People are fond of saying this

If you want to know what Perl will think of some program, you must ask perl itself

No regex or other simple process will always produce the right answer

This is because to parse Perl, you also have to be able to interpret Perl

Bizarre but typical example:

 $t = time / 3; # Is this a comment? /;

 $s = sin / 3; # Is this a comment? /;

Now what about this?

 $u = blub / 3; # Is this a comment? /;

You need to know if blub is like time or like sin

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 87

"Only perl can parse Perl"
 $u = blub / 3; # Is this a comment? /;

Where did blub come from?

 package Blub;
 use Astro::MoonPhase;

 sub import {
 my $caller = caller;
 my ($phase) = phase(time());
 if (0.4 < $phase && $phase < 0.6) {
 *{$caller . "::blub"} = sub () { 1 };
 } else {
 *{$caller . "::blub"} = sub ($) { $_[0] };
 }
 }

This program parses differently when the
moon is full

So to fully parse all Perl programs, you
must be able to determine the phase of
the moon

And that’s why only perl can parse Perl

Nevertheless, filters can do reasonably well in
practice

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 88

Function Tracing Again
Filter::Simple can help out with the parsing a little

Suppose we’d like to instrument each function to announce itself when it’s called

It is sufficient to have each function call ’trace’:

 sub trace {
 ($package, $file, $line, $subr) = caller;
 my $depth = 0;
 1 while defined caller(++$depth);
 my $indent = " " x ($depth - 2);
 local $" = ’, ’;
 print "$package\::$subr(@_)\n";
 }

Our source filter will find this:

 sub something {
 ...

And replace it with this:

 sub something {
 &Trace::trace;
 ...

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 89

Function Tracing
 package Trace;
 use Filter::Simple;

 sub trace { ... }

 FILTER_ONLY code => sub {
 s{^(\s* sub \s+ [a-zA-Z_]\w* \s* \{)}
 {$1 &Trace::trace; }xmg;
 };

FILTER_ONLY code will not modify this:

 $z = "
 sub z {
 Oh no!
 }
 ";

The code that’s passed to the filter actually has

 $z = \034\000\000\000\001\034;

Filter::Simple puts this back the way it was afterwards

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 90

Internationalization
Let’s convert a program to run in other languages

 print "Hello there!\n";
 print "Should I erase all your files (yes/no)? ";
 chomp(my $response = <>);
 if ($response eq ’yes’) {
 system("rm -rf $ENV{HOME}");
 }

The program shouldn’t actually say Hello there!

Instead, it should consult a database of texts

In Mexico, the database will contain ¡Buenos dias! instead

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 91

Internationalization
 package Translate;
 use Filter::Simple;

 my %lexicon =
 (’Hello there!\n’ => "¡Buenos Dias!\n",
 ’Should I erase all your files (yes/no)? ’
 => ’¿Debo borrar todos sus archivos (si/no)? ’
 ’yes’ => ’si’,
);

 FILTER_ONLY string => sub {
 unless (exists $lexicon{$_}) {
 warn qq{No translation for "$_"\n};
 $lexicon{$_} = $_;
 }
 $_ = $lexicon{$_};
 };

Or more likely the %lexicon will be tied to a disk database

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 92

Perl6::Variables

The Perl 6 variable syntax is a little different

Beginners always want element 3 of @array to be @array[3]

In Perl 6, it is.

 Perl 5 Perl 6

 $s $s
 $a[$n] @a[$n]
 $h{$k} %h{$k}
 $s->[$n] $s[$n]
 $s->{$k} $s{$k}
 $s->(@a) $s(@a)

We’ll build a filter that translates Perl 6 syntax to Perl 5’s

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 93

Perl6::Variables

 package Perl6::Variables;
 use Regexp::Common;
 use Filter::Simple;

 FILTER_ONLY code => \&translate,
 string => \&translate_string,
 ;

Filter::Simple will call translate_string on each string in the program

It’ll also call translate on the entire code, but with the strings ’blanked out’

That way we needn’t worry about applying code transformations to strings

Filtering strings is similar to filtering code

Except we have to worry about backslash escapes

 Perl 6 Perl 5

 @array[3] $array[3]
 \@array[3] \$array[3]"
 "@array[3]" "$array[3]"
 "\@array[3]" "\@array[3]"

So translate_string will pass a flag to translate to tell it to handle backslashes

 sub translate_string { translate_code(1) }

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 94

Perl6::Variables

The rest of it is mostly an exercise in regexology

 sub translate_code {
 my $doing_a_string = shift;
 my $result = "";

 while (1) {
 if ($doing_a_string) { # Handle backslashes
 /\G((?:\\\\)+)(?!=\\)/gc and $result .= $1, next;
 /\G((?:\\\\)+)\\./sgc and $result .= $1, next;
 }

 if (/\G([\$\@\%]) ($name) ($P) /sgcx) {
 my $arrow = "";
 my ($sigil, $var, $subs) = ($1, $2, $3);
 $arrow = "->" if $sigil eq ’$’;
 $result .= join "", ’$’, $var, $arrow, $subs;
 next;
 }
 /\G([\w\s]+)/gc and $result .= $1, next;
 /\G(.)/sgc and $result .= $1, next;
 last;
 }

 $_ = $result;
 }

The real Perl6::Variables is just a more extensive exercise in regexology

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 95

Making Things Appear to Be What They’re Not

Part IV: Autoloading

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 96

What is Autoloading?
What happens when you call a function that isn’t there?

Perl looks for a function named AUTOLOAD in the same package

If it finds it, it calls it

AUTOLOAD is a catchall for undefined functions

Similarly for methods

$o->METH searches the inheritance tree for METH

If it’s not there, the inheritance tree is searched again for AUTOLOAD

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 97

Simple AUTOLOAD Example
 @funcs = qw(red yellow blue);

 sub red { ... }
 sub yellow { ... }
 sub blue { ... }

 sub AUTOLOAD {
 die "Function $AUTOLOAD unknown; try [@funcs]\n";
 }

Now if you do

 green(...);

You get this:

 Function main::green unknown; try [red yellow blue]

The name of the would-be function is placed in $AUTOLOAD

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 98

Simple AUTOLOAD Example
 @funcs = qw(red yellow blue);

 sub red { ... } # etc.

 sub AUTOLOAD {
 my ($package, $function) = ($AUTOLOAD =~ /(.*)::(.*)/);
 my $correct = approximate_match($function, \@funcs);
 if (defined &$correct) {
 return &$correct(@_);
 } else {
 die "Function $function unknown; try [@funcs]\n";
 }
 }

Now if you do

 blug(...);

it just calls blue for you with the same arguments as if nothing was wrong

Inside of AUTOLOAD, @_ contains the regular function arguments

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 99

Simple AUTOLOAD Example
 blug(...); # Calls blue() instead

A few years ago I gave this class at YAPC

Someone in the audience asked "Are you sure this is a good idea?"

No, it’s a completely terrible idea

Unfortunately, Dave Cross was also in the audience

The result was Symbol::Approx::Sub

At least the documentation says:

Why you would ever want to do this is a
complete mystery to me.

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 100

Magic goto
These two are almost the same:

 sub AUTOLOAD { sub AUTOLOAD {
 return &blue; goto &blue;
 } }

On the right is magic goto.

Calls blue normally

But blue returns directly to AUTOLOAD’s caller

Just as if AUTOLOAD had never been called

Magic goto is perfect for autoloaded functions

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 101

Brief Digression: Tracing Again
In Part I, we saw a trace utility

It wrapped each function inside a tracing wrapper:

 my $real_func = \&*$func_name;
 *{$caller . "::$func_name"} = sub {
 print "$func_name(@_)\n";
 $real_func->(@_);
 };

If $real_func depends on caller, it could get confused

It will notice that it was called from the wrapper, not from the real caller

Solution:

 {$caller . "::$func_name"} = sub {
 print "$func_name(@_)\n";
 goto &$real_func;
 };

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 102

Case-Insensitive Function Calls
 sub closethewindow { ... }

 sub AUTOLOAD {
 my ($package, $func) = ($AUTOLOAD =~ /(.*)::(.*)/);
 my $true_func = join ’::’, $package, lc $func;
 goto &$true_func if defined &$true_func;
 croak "Undefined subroutine &$AUTOLOAD";
 }

defined &foo checks to see if the function exists

Now you can call closeTheWindow

or CloseTheWindow

or CLOSETHEWINDOW

It doesn’t matter.

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 103

Function Call Caching
 sub closethewindow { ... }

 sub AUTOLOAD {
 my ($package, $func) = ($AUTOLOAD =~ /(.*)::(.*)/);
 my $true_func = join ’::’, $package, lc $func;
 if (defined &$true_func) {

 *$AUTOLOAD = \&$true_func;
 goto &$AUTOLOAD;
 }
 croak "Undefined subroutine &$AUTOLOAD";
 }

First time we call CloseTheWindow, alias the two function names

Second time, we get CloseTheWindow directly

There’s that magic glob again

goto &$AUTOLOAD and *$AUTOLOAD = ... are common idioms

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 104

Typical AUTOLOAD Use: Accessor Methods
 package Object;
 my @attrs = qw(color size price); # 637 of these
 my %is_attr = map {$_ => 1} @attrs;

 sub new {
 my $pack= shift;
 my %self;
 @self{@attrs} = @_;
 bless \%self => $pack;
 }

 ...

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 105

Direct Emulation of Accessors
 my @attrs = qw(color size price ...); # 637 of these
 my %is_attr = map {$_ => 1} @attrs;

 ...

 sub AUTOLOAD {
 my $self = shift;
 my ($package, $method) = ($AUTOLOAD =~ /(.*)::(.*)/);
 unless ($is_attr{$method}) {
 croak "No such attribute: $method; aborting";
 }

 my $val = $self->{$method};
 $self->{$method} = shift if @_;
 $val;
 }

What for?

 $object->color(’red’); # set object’s color
 $size = $object->size; # fetch object’s size

No need to define 637 separate accessor functions

All handled by one AUTOLOAD

(Warning: This method also gets called for DESTROY and others)

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 106

Caching Accessor Methods
Calling via AUTOLOAD incurs overhead

Aliasing also incurs some overhead

We can avoid almost all overhead and win the tradeoff:

 sub AUTOLOAD {

 # ... as before; set up $method ...

 my $code = q{
 sub {
 my ($self) = @_;
 my $val = $self->{METHODNAME};
 $self->{METHODNAME} = shift if @_;
 $val;
 }
 };

 $code =~ s/METHODNAME/$method/g;

 *$AUTOLOAD = eval $code;
 goto &$AUTOLOAD;
 }

The first time, it constructs and compiles the code for the method

Second time, the method is called directly with no AUTOLOAD

No overhead!

There’s that magic glob again.

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 107

Autoloading From a File
If there’s a lot of autoloaded code, it makes more sense to keep it in a file

 sub AUTOLOAD {
 my $file = $AUTOLOAD;
 $file =~ s{::}{/}g;
 $file = "/src/app/autoloaded/$file.al";

 open my $fh, "< $file"
 or croak "Couldn’t load code from $file: $!; aborting";

 my $code;
 { local $/; $code = <$fh> }
 *$AUTOLOAD = eval $code;
 goto &$AUTOLOAD;
 }

The first time the function is called, the code is loaded from the file

Code for Some::Module::foo is in .../Some/Module/foo.al

Code compiled and installed in symbol table as before

Second time, the function is called directly - no overhead

Now you know what AutoLoader does - invented for POSIX

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 108

Generating Functions Dynamically
In this example, compiling the code repeatedly is a waste of time

Only one variable changes in each accessor

Perl can construct functions that share code without recompiling

 sub AUTOLOAD {

 # ... as before; set up $method ...

 my $code = sub {
 my ($self) = @_;
 my $val = $self->{$method};
 $self->{$method} = shift if @_;
 $val;
 };

 *$AUTOLOAD = $code;
 goto &$AUTOLOAD;
 }

The new method is a closure

It refers to a private variable, $method

When AUTOLOAD returns, only the new method has a reference to $method

The new methods all share code, but each has its own private $method variable

Method code is compiled only once, along with the rest of your program

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 109

NEXT.pm

Consider this class inheritance structure:

Now consider D::DESTROY

We would like D::DESTROY to call B::DESTROY (if there is one)

Moreover B::DESTROY should call A::DESTROY (ditto)

We can accomplish that this way:

 # Package D
 sub DESTROY {
 my $self = shift;
 # Do various destructions here
 $self->SUPER::DESTROY;
 }

SUPER::DESTROY means "call DESTROY"

If B::DESTROY also calls SUPER::DESTROY, everything works as it should

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 110

NEXT.pm

 $self->SUPER::DESTROY;

But what if $self has more than one base class?

Which DESTROY method is called?

Only the first one, it turns out.

Suppose each DESTROY calls SUPER::DESTROY

Unfortunately, that’s not enough

D::DESTROY calls B::DESTROY

B::DESTROY calls A::DESTROY

C::DESTROY is never called

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 111

NEXT.pm

NEXT is the solution to this problem

Each method calls ->NEXT::method

This magically redispatches to the correct ’next’ method

For example:

Note that when $self->NEXT::method in class A depends on
the class of $self

If $self is a D, then A dispatches to C

If $self is a B, then A dispatches nowhere

Damian Conway invented this

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 112

NEXT.pm

If some of the methods are missing, NEXT figures that out:

But how does this all work?

NEXT is essentially a big fat AUTOLOAD

->NEXT::method wants to call NEXT::method

But there isn’t one, so it calls NEXT::AUTOLOAD instead

NEXT::AUTOLOAD examines the inheritance hierarchy

Figures out the correct ’next’ method

Jumps there with magic goto

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 113

NEXT.pm

Here’s a simplified version

First, a utility function:

 sub class_structure {
 my $start = shift;
 my $prev;

 my @todo = ($start);
 my %next;
 while (@todo) {
 my $cur = shift @todo;
 $next{$prev} = $cur if defined $prev;
 unshift @todo, @{"$cur\::ISA"};
 $prev = $cur;
 }
 \%next;
 }

Given a class name, this returns a hash of ’next’ classes

Given D it returns

 { D => B, B => A, A => C, C => undef }

Given B it returns

 { B => A, A => undef }

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 114

NEXT.pm

 sub AUTOLOAD {
 my ($self_class) = ref $_[0] || $_[0];
 my $cs = class_structure($self_class);

 my $caller_class = caller;
 my $next_class = $caller_class;

 my (undef, $method) = ($NEXT::AUTOLOAD =~ /(.*)::(.*)/);

 do {
 $next_class = $cs->{$next_class};
 } while defined $next_class
 && not defined &{"$next_class\::$method"} ;

 if (defined $next_class) {
 goto &{"$next_class\::$method"};
 } else {
 return;
 }
 }

We find out the class that the target object is in ($self_class)

We get the next-class table for that class ($cs)

We figure out where we were called from ($caller_class)

We scan $cs until we find a new class that has the method we want

Then we go to it

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 115

NEXT.pm

That version returns silently if there is no ’next’ method

You might like it to die instead

For example, an AUTOLOAD might decide it’s not prepared to emulate a certain
function

It wants to delegate control to the next AUTOLOAD, which might handle it

But if there are no more AUTOLOADs, it should croak, since nobody will handle it

$self->NEXT::ACTUAL::method(...) will croak if there is no ’next’ method

The code is simple

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 116

NEXT.pm

$self->NEXT::ACTUAL::method(...) will croak if there is no ’next’ method

 sub AUTOLOAD {
 my ($self_class) = ref $_[0] || $_[0];
 my $cs = class_structure($self_class);

 my $caller_class = caller;
 my $next_class = $caller_class;

 my ($my_class, $method) =
 ($NEXT::AUTOLOAD =~ /(.*)::(.*)/);

 do {
 $next_class = $cs->{$next_class};
 } while defined $next_class
 && not defined &{"$next_class\::$method"} ;

 if (defined $next_class) {
 goto &{"$next_class\::$method"};
 } else {
 croak qq{Can’t locate object method "$meth"
 via package "$self_class"};
 if $my_class eq ’NEXT::ACTUAL’;
 return;
 }
 }

 @NEXT::ACTUAL::ISA = (’NEXT’);

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 117

Shell.pm

One final hack:

 sub AUTOLOAD {
 my ($pack, $func) = ($AUTOLOAD =~ /(.*)::(.*)/);
 qx{$func @_};
 }

Now you can write Perl programs that look like shell scripts:

 $passwd = cat("</etc/passwd");
 print $passwd;

 sub ps;
 print ps -ww;

 cp("/etc/passwd", "/tmp/passwd");

This is due to Larry Wall

I omitted a lot of details here

See Shell.pm for the actual implementation

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 118

Cantrips

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 119

Returning a False Value
 sub foo {
 ...
 return undef; # False
 }

 if (@result = foo(...)) { ... }

Oops. undef is not false in a list context!

@result has one element, which is undef

 if (@result) { ... } # Yes!

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 120

Returning a False Value
Solution:

 sub foo {
 ...
 return;
 }

Returns undef in scalar context.

Returns empty list in list context.

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 121

The Self-Replacing Stub
We’ve already seen

 ...
 require Carp;
 Carp::croak(...);
 ...

as a way to defer loading of a module until it’s needed.

Alternative: use AUTOLOAD

 sub AUTOLOAD {
 if ($AUTOLOAD =~ /::croak$/) {
 require Carp;
 goto &Carp::croak;
 }
 }

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 122

The Self-Replacing Stub
Here’s another way:

 sub croak {
 require Carp;

 *croak = \&Carp::croak;
 goto &croak;
 }

There’s that magic glob again.

Also magic goto

But also see autouse.pm

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 123

Schwartzian Transform
Sort list of items by some non-apparent feature

Example: Sort filenames by last-modified date

Obvious method is very wasteful:

 sort { -M $b <=> -M $a } (readdir D);

Calls -M over and over on the same files

Another idea:

1. Construct data structure with both names and dates

2. Sort by date

3. Throw away dates

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 124

Schwartzian Transform
 @names = readdir D;

 @names_and_dates =
 map { { NAME => $_, DATE => -M $_ } }
 @names;

 @sorted_names_and_dates =
 sort { $b->{DATE} <=> $a->{DATE} }
 @names_and_dates;

 @sorted_names =
 map { $_->{NAME} }
 @sorted_names_and_dates;

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 125

Schwartzian Transform
 @sorted_names =
 map { $_->[0] }
 sort { $b->[1] <=> $a->[1] }
 map { [$_, -M $_] }
 readdir D;

Caveat: Do not optimize without benchmarking!

 User System Total
 5.11 + 6.83 = 11.94 Naive sort
 7.37 + 0.82 = 8.19 Schwartzian transform

Donald E. Knuth (famous wizard) says (quoting R. W. Floyd):

Premature optimization is the root of all evil.

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 126

Schwartzian Transform
Well-known to Unix shell programmers:

 # Sort file names by file size

 ls -l | sort -n +4 | awk ’{print $NF}’

 # Sort output of SOMETHING from most frequent to least

 SOMETHING | uniq -c
 | sort -nr | awk ’{$1=""; print}’

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 127

Debug Printing of Strings
 if (/carrots$/) { die }

But it didn’t die! Why not?

Try the debugger:

 DB<119> p $_;
 I like carrots

Pull your hair out.

Or, instead:

 DB<119> p "<$_>";
 <I like carrots >

Oho.

The terminal program should have taken care of this!

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 128

Debug Printing of Lists
 @t = (’x’, ’ ’, ’=’, ’ ’, ’3.4’, ’& ’, ’y’, ’’, ’=’, ’’, ’5’)

Now print @t yields

 x = 3.4& y=5

Hard to tell what the list elements are!

print "@t" is even worse!

 x = 3.4 & y = 5

Solution:

 $" = ’)(’;
 print "(@t)";

 (x)()(=)()(3.4)(&)(y)()(=)()(5)

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 129

?:?:?:

Most folks know about the ?: operator

 *{$p . ’::’ . $n} = (ref $v ? $v : \$v);

It’s a compact version of an if-else block

What if you want a compact version of an if-elsif-else block?

 sub sign {
 my $x = shift;
 if ($x < 0) { return -1 }
 elsif ($x == 0) { return 0 }
 else { return +1 }
 }

No problem:

 sub sign {
 $_[0] < 0 ? -1 :
 $_[0] == 0 ? 0 :
 1 ;
 }

Everything is as it should be

The precedence is fine, the short-circuiting is
fine

The folks who designed the ?: operator are
very smart

So chain together as many as you want

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 130

Booleanumbers
 sub delete_files {
 my ($dir) = @_;
 opendir my $dh, $dir or return;
 my $deleted = "0e0";
 for (readdir $dh) { ++$deleted if unlink }
 return $deleted;
 }

 unless (delete_files(...)) { die... }

 $num_deleted = delete_files(...);

Function only returns false on an error

Even when it returns 0, it returns true

"0e0" is zero, but true

Also "0 but true" return from ioctl

DBI uses a similar trick

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 131

Local Effects
local confines a change to a block

We saw:

 { local *F = \&VeryLongName::SomeFunction;

 F(...);
 }

 { local $| = 1;
 $rc = print $self "";
 }

 { local $/; $code = <$fh> }

Wouldn’t it be nice to be able to do this:

 { local chdir $DIR;
 ...
 }
 # Old directory is restored here

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 132

Local Effects
Here’s the idea:

 { my $temporary = LocalChdir->chdir_to($DIR);
 ...
 }

When control exits the block, $temporary will be destroyed

We can rig up LocalChdir::DESTROY to move back to the old directory

 package LocalChdir;
 use Cwd;

 sub chdir_to {
 my ($package, $new_dir) = @_;
 my $old_dir = cwd();
 return unless chdir($new_dir);
 bless { DIR => $old_dir } => $package;
 }

 sub DESTROY {
 my $dir = $_[0]{DIR};
 chdir($dir)
 or croak("Couldn’t return to ’$dir’ on block exit: $!");
 }

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 133

Local Effects
This trick is widely used:

 use SelectSaver;
 { my $saver = SelectSaver->(FH);
 # FH is selected
 }
 # old handle is selected

Or:

 use Hook::LexWrap;
 {
 my $temporarily = wrap ’myfunction’,
 post => sub { print "[post:@_]\n" },
 pre => sub { print "[pre: @_]\n "};
 # Function is wrapped
 }
 # Function is no longer wrapped

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 134

Selecting n Different Things
 while (keys %h < $n) {
 $h{select_thing()}++;
 }
 @things = keys %h;

In scalar context, keys %h is super-efficient.

No, it does not count the keys one at a time.

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 135

Dinner Time!

Thanks very much for attending my class

The evaluation form is at

 http://perl.plover.com/class/eval.cgi

Or you can send me mail with questions or comments whenever you like

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 136

Other Resources
Perl Cookbook, Christiansen and Torkington. O’Reilly and Associates.

Perl Paraphernalia web site. http://perl.plover.com/

Object-Oriented Perl, Damian Conway. Manning Publications.

Advanced Perl Programming (2nd Edition), Simon Cozens. O’Reilly and
Associates.

Perl 6 development web site. http://dev.perl.org/perl6/

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 137

Bonus Slides Not in the Talk Anymore
Talks evolve over the years

Things move in, other things move out

I still have the slides for the stuff that moved out

You might as well see them if you’re interested

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 138

Biographical Note
I first did this class in 1999

It used to say:

Disclaimer
I am not personally a wizard.

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 139

Biographical Note
But last year at YAPC Larry said he thought I was a wizard

Says Larry:

"One of the benefits of Perl culture is that anyone can become a
wizard regardless of age, race, gender, or programming ability."

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 140

Making Things Appear to Be What They’re Not

Part III: Overloading

(Eliminated summer 2000 in favor of Autoloading)

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 141

Overloading Overview
In overloading, you redefine the effect of the standard Perl operators like + and . to
have a special meaning for objects in a certain class.

Operator applications are transformed into method calls.

Syntax:

 package MyClass;
 use overload ’+’ => \&myadd,
 ’-’ => \&mysubtract,
 ...
 ;

Now $obj1 - $x turns into

 $obj1->mysubtract($x);

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 142

Overload Method Call Summary
Argument 1 is always an object of the appropriate class, as with any method

On two objects of the same type, you get the objects in the same order:

 $obj1 - $obj2 mysubtract($obj1, $obj2);
 $obj2 - $obj1 mysubtract($obj2, $obj1);

When operating on an overloaded object and an unoverloaded value, the object is
always the first argument:

 $obj1 - $x mysubtract($obj1, $x);
 $x - $obj1 mysubtract($obj1, $x, 1);

On two overloaded objects of different types, the left-hand argument determines
whose method will be called:

 $obj1 - $OBJX mysubtract($obj1, $OBJX);
 $OBJX - $obj1 Xcombine($OBJX, $obj1);

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 143

Overloading: Normal uses
BigInt, BigFloat, Complex, etc.

Vectors, Bit::Vector, etc.

I tried to think of more, but actually overloading is overrated.

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 144

Overloading: Example
 package Vector3;
 use Carp;

 use overload ’+’ => \&add,
 ’*’ => \&dotproduct,
 ’x’ => \&crossproduct,
 ;

 sub new {
 my $package = shift;
 $package = ref $package || $package;
 croak "Usage: new(x,y,z)" unless @_ == 3;
 my %self;
 @self{’X’,’Y’,’Z’} = @_;
 bless \%self => $package;
 }

 ...

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 145

Overloading: Example
 sub add {
 my ($vec1, $vec2) = @_;
 unless (ref $vec1 && $vec1->isa(’Vector3’)
 && ref $vec2 && $vec2->isa(’Vector3’)) {
 croak "Invalid vector addition";
 }
 $vec1->new(map {$vec1->{$_} + $vec2->{$_}} qw(X Y Z));
 }

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 146

Overloading: Example
 sub dotproduct {
 my ($vec1, $vec2, $rev) = @_;

 if (ref $vec2 && $vec2->isa(’Vector3’)) {
 my $dp = 0;
 for (qw(X Y Z)) {
 $dp += $vec1->{$_} * $vec2->{$_};
 }
 return $dp;
 } elsif (! defined ref $vec2) { # It’s a scalar
 return $vec1->new(map {$vec2 * $vec1->{$_}} qw(X Y Z));
 } else {
 croak "Invalid vector scalar multiplication";
 }
 }

 sub crossproduct {
 ...
 }

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 147

Overloading: Bizarre Example
We’re going to detect Y2K bugs.

Perl localtime function is very badly designed.

 (..., $year, ...) = localtime(...);

 $q = "$mon/$day/$year"; # wrong
 $q = "$mon/$day/" . sprintf(’%02d’, $year % 100); # RIGHT

 print "The year is 19$year.\n"; # wrong
 print "The year is 19" . $year . ".\n"; # wrong
 print "The year is ", 1900+$year, ".\n"; # RIGHT

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 148

Overloading: Y2K Detection Example
Strategy:

Override localtime to call our fake localtime function

Our function will return the usual values, except...

The year item will be a special object...

Which will be overloaded to call carp if it is concatenated with "19"

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 149

Overloading: Y2K Detection Example
 package y2k;
 use Carp;
 use overload ’.’ => \&concat,
 ’0+’ => \&to_num,
 ;

 sub import {
 my $caller = caller;
 *{$caller . ’::localtime’} = \&fake_localtime;
 *{$caller . ’::gmtime’ } = \&fake_gmtime;
 }

There’s that magic glob again.

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 150

Overloading: Y2K Detection Example
 package y2k;
 ...
 sub fake_localtime {
 unless (wantarray) {
 return @_ ? localtime(@_) : localtime();
 }
 my @lt = @_ ? localtime(@_) : localtime();
 $lt[5] = { YEAR => $lt[5] };
 bless $lt[5] => ’y2k’;
 @lt;
 }

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 151

Overloading: Y2K Detection Example
 package y2k;
 ...
 sub to_num {
 my ($year) = @_;
 return $year->{YEAR};
 }

 sub concat {
 my ($y2k, $s, $rev) = @_;
 carp("Detected possible Y2K problem");
 my $year = sprintf("%02d", $y2k->{YEAR} % 100);
 $rev ? $s . $year : $year . $s;
 }

Or use Syslog instead of carp.

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 152

Overloading: Y2K Detection Example
Program now croaks on $year % 100, $year + 1900, etc.

One solution: Just add modulus, addition, etc. methods.

Another solution:

 package y2k;
 ...
 use overload ’nomethod’ => \&default;
 ...
 sub default {
 my ($y2k, $arg, $rev, $op) = @_;
 my $y = $y2k->{YEAR};
 my $expr = $rev ? "$arg $op $y" : "$y $op $arg";
 eval $expr;
 }

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 153

Overloading: Y2K Detection Example
Another solution uses a dispatch table:

 { my ($year, $arg);

 %methods = (
 ’+’ => sub { $year + $arg },
 ’%’ => sub { $year % $arg },
 ’r%’ => sub { $arg % $year },
 ...
);

 sub default {
 my ($y2k, $a, $rev, $op) = @_;
 my $code = $rev
 ? ($methods{"r$op"} || $methods{$op})
 : $methods{$op}
 ;
 croak "No method defined for y2k object for operation ‘$op’"
 unless $code;
 $arg = $a;
 $year = $y2k->{YEAR};
 &$code;
 }
 }

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 154

Big Techniques

(Eliminated in favor of autoloading)

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 155

Big Technique #1: Newton-Raphson Method
Almost everyone has to work with numbers

Numerical computation techniques are an entire field

Most techniques are special-purpose

This one is an exception

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 156

sqrt()

How does the Perl sqrt() function work?

Probably uses something like the Newton-Raphson Method

To compute sqrt(2), we need to solve the equation

x2 - 2 = 0

That’s where this parabola crosses the x axis

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 157

Newton-Raphson Method

Guess a solution (yes, just guess!)

Tangent line through that point will locate a better guess

Repeat as desired

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 158

Repeat as desired

Newton-Raphson Method

Math and code turn out to be very simple in general

Even simpler for this particular case

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 159

Square Roots with Newton-Raphson Method
 sub square_root {
 my ($n, $e) = @_;
 $e ||= 0.00001;
 my $guess = $n; # Yes, just guess!

 while (abs(($guess*$guess - $n)/$n) > $e) {
 $guess = ($guess + $n/$guess)/2;
 }
 return $guess;
 }

That’s all!

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 160

Solve Any Equation With Newton-Raphson
Suppose you want to solve f (x) = N

Step 1: Compute the derivative d(x)

Or get the math expert down the hall to do it

Then the answer is:

 sub solve {
 my ($N) = @_;
 my $g = 1; # Substitute a reasonable guess here
 until (the guess is good enough) {
 $g -= (f($g) - $N) / d($g);
 }
 return $g;
 }

Warnings:

Initial guess must be reasonable

Method doesn’t always work

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 161

Solve Any Equation With Newton-Raphson
Example: Financial computations

A principal P invested for time N at rate of return i grows to:

 $F = $P * (1+$i)**$N ;

Question: How long before I have a million dollars?

(Given F, P, and i, compute N)

The math expert down the hall says that the derivative is

 $P * (1+$i)**$N * log(1+$i)

Looks nasty, but that’s OK, just plug it in

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 162

Newton-Raphson: Financial Computations
 sub how_long {
 my ($P, $i, $F) = @_;
 my $g = 1; # Initial guess
 my $d = 1;
 until ($d/$g < 0.000001) {
 $d = ($P * (1+$i)**$g - $F)
 / ($P * (1+$i)**$g * log(1+$i));
 $g -= $d;
 }
 return $g;
 }

Example: how_long(10000, 0.065, 1000000) is 73.1271913100701

$10,000 invested at 6.5% interest becomes $1,000,000 after 73.12 years

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 163

Big Technique #2: Caching
Makes programs faster

Exchanges space for time

When a cached function is called, its return value is saved

When called again with same arguments, the saved value is returned

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 164

Caching
Very commonly used

Example: Your local DNS server caches the responses it gets from other DNS
servers

Another example: Converting RGB values to CMYK values:

 sub cmyk {
 my ($r, $g, $b) = @_;
 my ($c, $m, $y) = (1-$r, 1-$g, 1-$b);
 my $k = $c < $m ? ($c < $y ? $c : $y)
 : ($m < $y ? $m : $y); # Minimum
 for ($c, $m, $y) { $_ -= $k }
 [$c, $m, $y, $k];
 }

Many image formats (including GIF) have many pixels that are the same color.

This recomputes the same CMYK values over and over.

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 165

Caching
Faster version:

 {
 my %cmyk;

 sub cmyk {
 my $key = join ’,’ , @_;
 return $cmyk{$key} if exists $cmyk{$key};
 $cmyk{$key} = real_cmyk(@_);
 }

 sub real_cmyk {
 # as before ...
 }
 }

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 166

Memoizing
Memoizing is the process of converting a function to use caching.

It can be done automatically

Here’s how you do it:

 use Memoize;
 memoize ’cmyk’;

 sub cmyk { ... as before ... }

That’s all!

I’d love to tell you all about the internals, but we don’t have time

You can read my TPJ article about it on my web site.

http://perl.plover.com/Memoize/

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 167

Memoizing
Memoizing is a really useful tool to have in your toolbox

Program too slow? Try sprinkling in a little memoization. It’s cheap and easy.

Need to profile? Try memoizing. If it works, rewrite the function you memoized; if
not, try another function.

Worried about recursion inefficiencies? Memoization is often a cheap and effective
alternative to rewriting in iterative style.

Continued...

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 168

Memoizing
Memoize slow functions like gethostbyname.

Memoize to a permanent database and speed up your function forever.

Same technique can be adapted to make a simple profiler

Or call counter

Or call-graph generator

See Philippe Verdret’s Hook::PrePostCall module

Memoization is impossible in C

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 169

Big Technique #3: Iterators
An iterator is an object interface to a list

Supports a ‘next’ operation to generate the next item when it is needed

Why?

The list might be enormous

Might take a long time to come up with list elements

You don’t know in advance how many you will want

You can pass the object around so it can be used by anyone who needs it

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 170

Iterators
This is not new: A filehandle is an iterator!

It encapsulates a list of strings (the lines)

The <...> operation requests the next string

Other examples: each, readdir(), glob

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 171

Iterator Example
Suppose you want to generate strings of a certain form

I got this example from a biologist

He wanted "AT(GC)A(TA)" to become ATGAT, ATGAA, ATCAT, ATGCAA.

He had built a recursive subroutine to generate all the strings of a given form

It took a long time to run and generated a uselessly large list

Iterators are a better solution

As an example, will expand "foo-#-bar#" instead:

foo-0-bar0

foo-0-bar1

...

foo-9-bar8

foo-9-bar9

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 172

Iterator Example
 sub make_iterator {

 my @tokens = split /(\#)/, shift();
 my $n_digits = grep {$_ eq ’#’} @tokens;
 my $digits = ’0’ x $n_digits;

 return sub {
 my $result;
 my $d = 0;
 for my $t (@tokens) {
 if ($t eq ’#’) {
 $result .= substr($digits, $d++, 1);
 } else {
 $result .= $t;
 }
 }

 $digits++;
 if (length $digits > $n_digits) { # Overflow?
 $digits = ’0’ x $n_digits; # Reset
 }

 return $result;
 };
 }

Anonymous subroutine is a closure

my variables are caputured by the closure

Each call to make_iterator constructs a new closure with new private state
variables

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 173

Iterator Example
 my $it = make_iterator(’foo-#-bar#’);

 for (1..105) {
 my $s = $it->();
 print "$s\n";
 }

 # Prints foo-0-bar0, foo-0-bar1,
 # ...,
 # foo-9-bar8, foo-9-bar9, ...

Easy change to make it stop and return undef instead of starting over.

Construct many iterators that all operate independently.

Pass iterators to functions, store in data structures.

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 174

Iterator Operations
An iterator is just as good as a list:

 while (defined ($item = $iterator->())) {
 # Do something with this $item
 }

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 175

Iterator Operations
If the iterator returns the list items in some canonical order, you can do this:

 sub both {
 my ($it1, $it2) = @_;
 my ($a, $b) = ($it1->(), $it2->());

 sub {
 return undef unless defined $a || defined $b;
 my $rv;
 if ($a lt $b || ! defined $b) {
 $rv = $a;
 $a = $it1->();
 } if ($b lt $a || ! defined $a) {
 $rv = $b;
 $b = $it2->();
 } else { # $a eq $b
 $rv = $a;
 ($a, $b) = ($it1->(), $it2->());
 }
 return $rv;
 }
 }

This function works for any iterators that return items in alphabetical order

If an iterator represents a database query, this is the OR operation

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 176

More Applications of Iterators
Database lookups can return an iterator that generates solutions on demand

Tree searches can return an iterator that generates solutions on demand

Search functions of any sort can ..

Important note:

This is just a technique for saving the state of a partially-completed function...

...and restarting it later

Not usually considered an easy thing to do!

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 177

Big Technique #4: State Machines
In a state machine, the program tracks a ‘current state’

It has a table that says, for each possible state and each possible input type:

What state to be in next

An action to perform

For example, suppose we’re writing an NNTP server:

In state START:
call &say_hello, goto MAIN

In state MAIN:
GROUP command: call &cmd_group, goto MAIN
QUIT command: call &cmd_quit and goto ...
POST command: call &cmd_post, goto HEADER
...

In state HEADER:
Blank line: call &article_save_header, goto BODY
.: goto ARTICLE_FINISH
Other: store line, goto HEADER

In state BODY:
.: goto ARTICLE_FINISH
Other: store line, goto BODY

In state ARTICLE_FINISH:
call &article_check_and_post, goto MAIN

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 178

Implementing State Machines in Perl
The easiest way is with a hash table.

The keys are the state names.

The values have:

The action to perform (a coderef)

The name of the next state

Other information if appropriate

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 179

State Machines For NNTP
 %machine = (
 START => { DEFAULT=> [\&say_hello, MAIN,],
 },
 MAIN => { group => [\&cmd_group, MAIN],
 quit => [\&cmd_quit, MAIN],
 post => [\&cmd_post, HEADER],
 ...
 },
 HEADER =>{ BLANK => [\&article_save_header, BODY],
 DOT => [undef, ARTICLE_FINISH],
 DEFAULT=> [\&store_line, HEADER],
 ...
);

Associated with each state is a transition table

Keys in transition table represent input conditions

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 180

State Machines For NNTP
 %machine = (
 START => { DEFAULT=> [\&say_hello, MAIN,], },
 MAIN => { group => [\&cmd_group, MAIN],
 ... } ...);

 BEGIN { $STATE = ’START’ }

 sub run_machine {
 for (;;) {
 my $t_table = $machine{$STATE};
 my ($input, @args) = get_input();
 my ($action, $next_state) =
 @{$t_table->{$input} || $t_table->{DEFAULT}};
 unless defined($next_state) {
 die "No transition defined for state $STATE, input $input";
 }
 $action->(@args) if $action;
 $STATE = $next_state;
 }
 }

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 181

State Machines Are Very Easy to Read!
 sub run_machine {
 for (;;) {
 my $t_table = $machine{$STATE};
 my ($input, @args) = get_input();
 my ($action, $next_state) =
 @{$t_table->{$input} || $t_table->{DEFAULT}};
 unless defined($next_state) {
 die "No transition defined for state $STATE, input $input";
 }
 $action->(@args) if $action;
 $STATE = $next_state;
 }
 }

For something as complicated as NNTP, this is very simple code!

All the details are in the table, which is tidy and compact

Brian Kernighan (noted wizard) says:

Capture regularity with code, irregularity with data.

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 182

Big Technique #5: Building a Replacement
Debugger

There’s nothing special about the perl debugger

It’s just another module

When you run perl -d ... it loads perl5db.pl

Code in perl5db.pl is enlightening

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 183

Why Build a Replacement Debugger?
Obvious tactic: Copy perl5db.pl, modify slightly, use.

But there are some non-obvious tactics

The debugger isn’t just an ordinary module

In debug mode, Perl enables special features

To use: Name the module Devel::Something

Run with perl -d:Something to automatically load

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 184

Debugger Features
Lots of functions for haruspication

See perldebguts (or perldebug) for fullest details

@{"::_<foo.pl"} contains the source code of foo.pl

%{"::_<foo.pl"} contains breakpoints and actions

%DB::sub contains subroutine start-end information

DB::DB() is called before each executed line

caller() returns current package, filename, line as usual, also sets @DB::args

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 185

Trivial Debugger
 package Devel::Count;

 sub DB::DB { ++$count }

 END { print "Total statements: $count\n" }

Now perl -d:Count program.pl prints out:

 Total statements: 286

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 186

Trace Execution
Occasionally-asked question:

"How can I emulate the behavior of the Bourne shell -x option?"

Here’s one way:

 package Devel::Trace;

 sub DB::DB {
 my ($p, $f, $l) = caller;
 my $code = \@{"::_<$f"};
 print STDERR ">> $f($l) $code->[$l]";
 }

Now perl -d:Trace sample.pl prints out:

 >> sample.pl(1) for (1 .. ($ARGV[0] || 12)) {
 >> sample.pl(2) next unless $_ % 12;
 >> sample.pl(3) print "";
 >> sample.pl(1) for (1 .. ($ARGV[0] || 12)) {
 (etc.)

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 187

Examine Source Code
 package Devel::Dumpcode;

 sub DB::DB { } # Do nothing special

 sub main::source_of_function {
 my $package = caller;
 $function = $package . ’::’ . shift();
 my ($file, $start, $end) =
 $DB::sub{$function} =~ /(.*):(\d+)-(\d+)/;
 @{"::_<$file"}[$start..$end];
 }

Now the program can do

 print source_of_function(’foo’)

to print out the source of function foo

Print code to file, invoke editor, reload, eval

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 188

Simple Profiler
Devel::DProf is complicated and hard to use

But building a simple profiler is easy

 package Devel::Profile;

 sub DB::DB {
 my ($package, $file) = caller();
 my ($subroutine) = (caller(1))[3];
 return if $subroutine eq ’(eval)’;
 $subroutine = "<$file>" unless defined $subroutine;
 ++$count{$subroutine};
 }

 END {
 for $subr (sort {$count{$b} <=> $count{$a}} (keys %count)) {
 printf STDERR "%8d %s\n", $count{$subr}, $subr;
 }
 }

Output:

 798 main::page
 66 </usr/local/bin/perldoc>
 57 Exporter::import
 49 main::check_file
 39 main::minusf_nocase
 (etc.)

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 189

Simple Coverage Analyzer
 package Devel::Coverage;

 sub DB::DB {
 my ($package, $file, $line) = caller();
 $files{$file} = 1;
 $covered{$file}[$line] = 1;
 }

 END {
 for my $file (keys %files) {
 my $array = \@{"::_<$file"};
 my ($executable, $covered) = (0, 0);
 for my $line (1 .. $#$array) {
 next if $array->[$line] == 0;
 $executable += 1;
 $covered += $covered{$file}[$line];
 }
 printf STDERR "%4d/%4d (%3.0f%%) covered in %s.\n",
 $covered, $executable, 100*$covered/$executable, $file
 unless $executable == 0;
 }
 }

In numeric context, @{"::_<foo"} elements are special

They are equal to zero only when the line is not executable

 10/ 31 (32%) covered in /usr/local/lib/perl5/5.6.0/Exporter.pm.
 10/ 70 (14%) covered in /usr/local/lib/perl5/5.6.0/Getopt/Std.pm.
 8/ 12 (67%) covered in /tmp/Devel/Coverage.pm.
 60/ 74 (81%) covered in ./MAKE_SLIDES.

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 190

Big Technique #6: Tokenizing
Tokens are the basic syntactically meaningful portions of an input.

For example, in

print 12+$var;

The tokens are print, 12, +, $, var, and ;

Individual characters are not generally meaningful.

Tokenizing is the act of converting a character stream into a token stream.

Also called lexing

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 191

Tokenizing
In C, you use programs like lex to convert a description of the
legal tokens into a tokenizer program.

Or you write a program to read the input
character-by-character and run a state machine

That is not very Perl-like.

It is also not very efficient.

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 192

Tokenizing
A regex is already a program for reading data character-by-character and running a
state machine

Let’s write a lexer for a calculator. It has the following tokens:

+, -, *, /, ̂ , **, (,), =

:=

Variable names: Value2, for example

Numbers with optional decimal points and scientific notation

Whitespace will be ignored except where it separates tokens

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 193

Tokenizing
Our trick:

 split /(a+)/, $string

This breaks $string into pieces which alternate between

Strings of a’s

The other stuff that was between the a’s

Note special split meaning of (capturing parentheses).

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 194

Tokenizing
The tokenizer:

 sub tokens {
 my @tokens =
 split m{(
 ** | := # ** or := operator
 |
 [-+*/^()=] # some other operator
 |
 [A-Za-z]\w+ # Identifier
 |
 \d*\.\d+(?:[Ee]\d+)? # Decimal number
 |
 \d+ # Integer
)}x, shift();
 grep /\S/, @tokens;
 }

Easy to understand and to change, efficient, predictable.

Behaves very much like similar lex-generated parsers

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 195

Tokenizing
We can get rid of that grep:

 sub tokens {
 split m{(
 ** | := # ** or := operator
 |
 [-+*/^()=] # some other operator
 |
 [A-Za-z]\w+ # Identifier
 |
 \d*\.\d+(?:[Ee]\d+)? # Decimal number
 |
 \d+ # Integer
)
 |
 \s+
 }x, shift();
 }

(Thanks to Andy Wardley.)

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 196

Exportation (Inheritable Method)
This exporter can be inherited by subclasses of Rings:

 package Rings;
 use Carp;

 %exports = map {$_ => 1} qw(Narya Nenya Vilya);

 sub import {
 my $caller = caller;
 my $package = shift;
 my $exported = \%{$package . ’::exports’};
 for my $name (@_) {
 unless ($exported->{$name}) {
 croak("Module $package does not export &$name; aborting");
 }
 *{$caller . ’::’ . $name} = \&{$package . ’::’ . $name};
 }
 }

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 197

Aliasing
 my $exported = \%{$me . ’::exports’};

 ... $exported->{$name} ...

That worked well enough, but here’s a better trick

 local *exported = \%{$me . ’::exports’};

Now %exported is the hash.

 ... $exported{$name} ...

You want the local so the change is confined to import

You can’t my a glob.

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 198

Aliasing
This is how Sarathy’s clever Alias module works.

A typical object:

 { SALARY => 45_000, Children => [’Ishmael’, ’Isaac’] }

A typical method:

 sub method {
 my $self = attr shift; # Alias::attr
 $SALARY *= 1.06; # Raise salary 6%
 print "You have lovely children, named @Children.\n";
 pop @Children; # Pay the price for that 6%
 }

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 199

Another Tied Hash: %!
Perl magic $! variable reflects the operating system error status

Example of use:

 unless (open FH, $filename) {
 if ($! == EACCES) {
 # Permission denied...
 } elsif ($! == ENOENT) {
 # No such file...
 } elsif ($! == ENOTDIR) {
 # Some part of the path is not a directory...
 } elsif ...
 }
 }

This doesn’t work---where did EACCESS etc. come from?

Solution 1: Import lots and lots of compile-time constants. (Blecch.)

Solution 2: Use %! instead: (5.005 and later.)

 unless (open FH, $filename) {
 if ($!{EACCES}) {
 # Permission denied...
 } elsif ($!{ENOENT}) {
 # No such file...
 } elsif ($!{ENOTDIR}) {
 # Some part of the path is not a directory...
 } elsif ...
 }
 }

When Perl saw you use %!, it loaded the Errno module and tied %! into it.

FETCH method checks the value of $!.

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 200

%! Implementation
 package Errno;

 sub ENOENT () { 2 }
 sub EACCES () { 13 }
 sub ENOTDIR () { 20 }
 # ... many more ...

 sub TIEHASH { bless [] } # Dummy object

 sub FETCH {
 my ($self, $errname) = @_;
 return $! == &$errname;
 }

 sub STORE {
 croak("ERRNO hash is read only!");
 }

This was invented by Tom Christiansen and implemented by Graham Barr.

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 201

Bizarre Tricks
A fruitful source of ideas is to ask:

‘‘What can I tie today?’’

Then if you get an answer, you learn something new and interesting.

For example: ‘‘I know! Let’s tie $_!’’

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 202

Bizarre tie Tricks: no underscore
Theory: People find implicit use of $_ confusing

Sometimes, it’s a genuine error, as with

 $z = s/x/y/g; # Should be =~

So let’s forbid it.

 no underscore; # Forbids use of $_

 $z = s/x/y/g; # Forbidden
 print HANDLE; # Forbidden
 chop; # Forbidden
 -x; # Forbidden

This was invented by Tom Christiansen

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 203

no underscore

 package underscore;
 use Carp;

 sub TIESCALAR {
 my $class = shift;
 my $dummy;
 return bless \$dummy => $class;
 }

 sub FETCH { croak "Read access to \$_ forbidden" }
 sub STORE { croak "Write access to \$_ forbidden" }

 sub unimport { tie $_ => __PACKAGE__ }
 sub import { untie $_ }

 1;

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 204

Import.pm Module
Idea: Method inheritance via @ISA is nice

Wouldn’t it be nice to inherit regular functions also?

We will emulate it with AUTOLOAD

 sub AUTOLOAD {
 my $code = get_code($AUTOLOAD);
 goto &$code if $code;
 die "Undefined subroutine $AUTOLOAD called";
 }

 sub get_code {
 my ($fullname) = @_;
 return \&$fullname if defined &$fullname;
 my($pkg, $sub) = ($fullname =~ /(.*)::(.*)/);
 for my $parent (@{$pkg . ’::ISA’}) {
 my $code = get_code(join ’::’, $parent, $sub);
 return $code if defined $code;
 }
 return;
 }

This was invented by Philip Gwyn

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 205

Build Your Own map
map and grep are great.

Wouldn’t it be nice to make some new, similar operators?

Example:

 $n = reduce { $a + $b } 1, 4, 2, 8, 5, 7

(Yields the sum, 27)

 $n = reduce { $a * $b } 1, 4, 2, 8, 5, 7

(Yields the product, 2240)

 $n = reduce { $a > $b ? $a : $b } 1, 4, 2, 8, 5, 7

(Yields the max, 8)

 $n = reduce { [@$a, $b] } [], (1, 4, 2, 8, 5, 7)

(Yields a list, [1,4,2,8,5,7])

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 206

reduce

 sub reduce (&$@) {
 my $code = shift;
 local $a = shift;

 for (@_) {
 local $b = $_;
 $a = &$code;
 }

 $a;
 }

(&$@)?!

local?!

Why $a and $b?

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 207

reduce

Here’s a fine, fine trick.

Let’s write a reduce call to ask if a list contains all positive numbers.

 reduce { $a && $b > 0 } "yes", @list;

If you apply this to the list (0 .. 1000000), it goes all way to the end

Solution:

 reduce { $a && $b > 0 || ($a=undef, last) } "yes", @list;

last?!

Yes! last is dynamically scoped!

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 208

combine

 @list1 = (1,2,3,4,5);
 @list2 = (2,3,5,7,11);
 @result = combine { $a + $b } @list1, @list2;

@result is (3,5,8,11,16)

 sub combine (&\@\@) {
 my ($code, $ar1, $ar2) = @_;
 my @result;

 while (@$ar1 && @$ar2) {
 local $a = shift @$ar1;
 local $b = shift @$ar2;
 push @result, &$code;
 }

 @result;
 }

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 209

Matching Many Patterns at Once
 @state_abbr = qw(AK AL AR AZ CA ... WV WY);

 @state_pat = (
 ’Alaska’,
 ’Alabama’,
 ’Arkansas’,
 ’Ariz(?:\.|ona)?’,
 ’Cal(?:\.|if(?:\.|ornia)?)?’,
 ...
 ’W(?:est|\.)?\s*V(?:irginia|\.)?’,
 ’Wyo(?:\.|ming)?’,
);

Given $input, does it match a state? Which one?

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 210

Matching Many Patterns at Once
The wrong way:

 for ($i=0; $i < @state_pat; $i++) {
 return $state_abbr[$i]
 if $input =~ /$state_pat[$i]/;
 }
 return;

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 211

Matching Many Patterns at Once
A better way:

 $pat = join ’|’, map "($_)", @state_pat;

$pat now looks like:

 (Alaska)|(Alabama)|...|(Wyo(?:\.|ming)?)

Now use:

 my @matchlist;
 if (@matchlist = ($input =~ /$pat/o)) {
 my $i = 0;
 ++$i until defined $matchlist[$i];
 return $state_abbr[$i];
 } else {
 return;
 }

Caution: Important to use (?:...) instead of (...) in subpatterns.

Next Copyright © 2003 M. J. Dominus

Next Tricks of the Wizards 212

Quick Return with Warning
 unless (open LOG, ">> $LOGFILE") {
 warn "Couldn’t append to $LOGFILE: $!";
 return;
 }

This is a very common locution.

Perhaps you might prefer this:

 return warn "Couldn’t append to $LOGFILE: $!"
 unless open LOG, ">> $LOGFILE";

That returns 1 on an open failure---perhaps not what you want.

 return !warn "Couldn’t append to $LOGFILE: $!"
 unless open LOG, ">> $LOGFILE";

Next Copyright © 2003 M. J. Dominus

