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We have developed and commercially deployed a flexible audio search engine.  The algorithm is noise and distortion resistant, 
computationally efficient, and massively scalable, capable of quickly identifying a short segment of music captured through a 
cellphone microphone in the presence of foreground voices and other dominant noise, and through voice codec compression, out 
of a database of over a million tracks.  The algorithm uses a combinatorially hashed time-frequency constellation analysis of the 
audio, yielding unusual properties such as transparency, in which multiple tracks mixed together may each be identified.  
Furthermore, for applications such as radio monitoring, search times on the order of a few milliseconds per query are attained, 
even on a massive music database. 
 
 

1 Introduction 
Shazam Entertainment, Ltd.  was started in 2000 with the 
idea of providing a service that could connect people to 
music by recognizing music in the environment by using 
their mobile phones to recognize the music directly.  The 
algorithm had to be able to recognize a short audio sample 
of music that had been broadcast, mixed with heavy 
ambient noise, subject to reverb and other processing, 
captured by a little cellphone microphone, subjected to 
voice codec compression, and network dropouts, all before 
arriving at our servers.  The algorithm also had to perform 
the recognition quickly over a large database of music with 
nearly 2M tracks, and furthermore have a low number of 
false positives while having a high recognition rate. 
 
This was a hard problem, and at the time there were no 
algorithms known to us that could satisfy all these 
constraints.  We eventually developed our own technique 
that met all the operational constraints [1]. 
 
We have deployed the algorithm to scale in our commercial 
music recognition service, with over 1.8M tracks in the 
database.  The service is currently live in Germany, 
Finland, and the UK, with over a half million users, and 
will soon be available in additional countries in Europe, 
Asia, and the USA.  The user experience is as follows:  A 
user hears music playing in the environment.  She calls up 
our service using her mobile phone and samples up to 15 
seconds of audio.  An identification is performed on the 
sample at our server, then the track title and artist are sent 
back to the user via SMS text messaging.  The information 
is also made available on a web site, where the user may 
register and log in with her mobile phone number and 
password.  At the web site, or on a smart phone, the user 
may view her tagged track list and buy the CD.  The user 
may also download the ringtone corresponding to the 
tagged track, if it is available.  The user may also send a 

30-second clip of the song to a friend.  Other services, such 
as purchasing an MP3 download may become available 
soon. 
 
A variety of similar consumer services has sprung up 
recently.  Musiwave has deployed a similar mobile-phone 
music identification service on the Spanish mobile carrier 
Amena using Philips’ robust hashing algorithm [2-4].  
Using the algorithm from Relatable, Neuros has included a 
sampling feature on their MP3 player which allows a user 
to collect a 30-second sample from the built-in radio, then 
later plug into an online server to identify the music [5,6].  
Audible Magic uses the Muscle Fish algorithm to offer the 
Clango service for identifying audio streaming from an 
internet radio station [7-9]. 
 
The Shazam algorithm can be used in many applications 
besides just music recognition over a mobile phone.  Due to 
the ability to dig deep into noise we can identify music 
hidden behind a loud voiceover, such as in a radio advert.  
On the other hand, the algorithm is also very fast and can 
be used for copyright monitoring at a search speed of over 
1000 times realtime, thus enabling a modest server to 
monitor significantly many media streams.  The algorithm 
is also suitable for content-based cueing and indexing for 
library and archival uses. 

2 Basic principle of operation 
Each audio file is “fingerprinted,” a process in which 
reproducible hash tokens are extracted.  Both “database” 
and “sample” audio files are subjected to the same analysis.  
The fingerprints from the unknown sample are matched 
against a large set of fingerprints derived from the music 
database.  The candidate matches are subsequently 
evaluated for correctness of match.  Some guiding 
principles for the attributes to use as fingerprints are that 
they should be temporally localized, translation-invariant, 
robust, and sufficiently entropic.  The temporal locality 



guideline suggests that each fingerprint hash is calculated 
using audio samples near a corresponding point in time, so 
that distant events do not affect the hash.  The translation-
invariant aspect means that fingerprint hashes derived from 
corresponding matching content are reproducible 
independent of position within an audio file, as long as the 
temporal locality containing the data from which the hash 
is computed is contained within the file.  This makes sense, 
as an unknown sample could come from any portion of the 
original audio track.  Robustness means that hashes 
generated from the original clean database track should be 
reproducible from a degraded copy of the audio.  
Furthermore, the fingerprint tokens should have sufficiently 
high entropy in order to minimize the probability of false 
token matches at non-corresponding locations between the 
unknown sample and tracks within the database.  
Insufficient entropy leads to excessive and spurious 
matches at non-corresponding locations, requiring more 
processing power to cull the results, and too much entropy 
usually leads to fragility and non-reproducibility of 
fingerprint tokens in the presence of noise and distortion. 
 
There are 3 main components, presented in the next 
sections. 

2.1 Robust Constellations 
In order to address the problem of robust identification in 
the presence of highly significant noise and distortion, we 
experimented with a variety of candidate features that could 
survive GSM encoding in the presence of noise.  We settled 
on spectrogram peaks, due to their robustness in the 
presence of noise and approximate linear superposability 
[1].  A time-frequency point is a candidate peak if it has a 
higher energy content than all its neighbors in a region 
centered around the point.  Candidate peaks are chosen 
according to a density criterion in order to assure that the 
time-frequency strip for the audio file has reasonably 
uniform coverage.  The peaks in each time-frequency 
locality are also chosen according amplitude, with the 
justification that the highest amplitude peaks are most 
likely to survive the distortions listed above. 
 
Thus, a complicated spectrogram, as illustrated in Figure 
1A may be reduced to a sparse set of coordinates, as 
illustrated in Figure 1B.  Notice that at this point the 
amplitude component has been eliminated.  This reduction 
has the advantage of being fairly insensitive to EQ, as 



generally a peak in the spectrum is still a peak with the 
same coordinates in a filtered spectrum (assuming that the 
derivative of the filter transfer function is reasonably 
small—peaks in the vicinity of a sharp transition in the 
transfer function are slightly frequency-shifted).  We term 
the sparse coordinate lists “constellation maps” since the 
coordinate scatter plots often resemble a star field. 
 
The pattern of dots should be the same for matching 
segments of audio.  If you put the constellation map of a 
database song on a strip chart, and the constellation map of 
a short matching audio sample of a few seconds length on a 
transparent piece of plastic, then slide the latter over the 
former, at some point a significant number of points will 
coincide when the proper time offset is located and the two 
constellation maps are aligned in register. 
 
The number of matching points will be significant in the 
presence of spurious peaks injected due to noise, as peak 
positions are relatively independent; further, the number of 
matches can also be significant even if many of the correct 
points have been deleted.  Registration of constellation 
maps is thus a powerful way of matching in the presence of 
noise and/or deletion of features.  This procedure reduces 
the search problem to a kind of “astronavigation,” in which 
a small patch of time-frequency constellation points must 
be quickly located within a large universe of points in a 
strip-chart universe with dimensions of bandlimited 
frequency versus nearly a billion seconds in the database. 
 

Yang also considered the use of spectrogram peaks, but 
employed them in a different way [10]. 

2.2 Fast Combinatorial Hashing 
Finding the correct registration offset directly from 
constellation maps can be rather slow, due to raw 
constellation points having low entropy.  For example, a 
1024-bin frequency axis yields only at most 10 bits of 
frequency data per peak.  We have developed a fast way of 
indexing constellation maps. 
 
Fingerprint hashes are formed from the constellation map, 
in which pairs of time-frequency points are combinatorially 
associated.  Anchor points are chosen, each anchor point 
having a target zone associated with it.  Each anchor point 
is sequentially paired with points within its target zone, 
each pair yielding two frequency components plus the time 
difference between the points (Figure 1C and 1D).  These 
hashes are quite reproducible, even in the presence of noise 
and voice codec compression.  Furthermore, each hash can 
be packed into a 32-bit unsigned integer.  Each hash is also 
associated with the time offset from the beginning of the 
respective file to its anchor point, though the absolute time 
is not a part of the hash itself. 
 
To create a database index, the above operation is carried 
out on each track in a database to generate a corresponding 
list of hashes and their associated offset times.  Track IDs 
may also be appended to the small data structs, yielding an 



aggregate 64-bit struct, 32 bits for the hash and 32 bits for 
the time offset and track ID.  To facilitate fast processing, 
the 64-bit structs are sorted according to hash token value. 
 
The number of hashes per second of audio recording being 
processed is approximately equal to the density of 
constellation points per second times the fan-out factor into 
the target zone.  For example, if each constellation point is 
taken to be an anchor point, and if the target zone has a fan-
out of size F=10, then the number of hashes is 
approximately equal to F=10 times the number of 
constellation points extracted from the file.  By limiting the 
number of points chosen in each target zone, we seek to 
limit the combinatorial explosion of pairs.  The fan-out 
factor leads directly to a cost factor in terms of storage 
space. 
 
By forming pairs instead of searching for matches against 
individual constellation points we gain a tremendous 
acceleration in the search process.  For example, if each 
frequency component is 10 bits, and the ∆t component is 
also 10 bits, then matching a pair of points yields 30 bits of 
information, versus only 10 for a single point.  Then the 
specificity of the hash would be about a million times 
greater, due to the 20 extra bits, and thus the search speed 
for a single hash token is similarly accelerated.  On the 
other hand, due to the combinatorial generation of hashes, 
assuming symmetric density and fan-out for both database 
and sample hash generation, there are F times as many 
token combinations in the unknown sample to search for, 
and F times as many tokens in the database, thus the total 

speedup is a factor of about 1000000/F2, or about 10000, 
over token searches based on single constellation points.   
 
Note that the combinatorial hashing squares the probability 
of point survival, i.e. if p is the probability of a spectrogram 
peak surviving the journey from the original source 
material to the captured sample recording, then the 
probability of a hash from a pair of points surviving is 
approximately p2.  This reduction in hash survivability is a 
tradeoff against the tremendous amount of speedup 
provided.   The reduced probability of individual hash 
survival is mitigated by the combinatorial generation of a 
greater number of hashes than original constellation points.  
For example, if F=10, then the probability of at least one 
hash surviving for a given anchor point would be the joint 
probability of the anchor point and at least one target point 
in its target zone surviving.  If we simplistically assume IID 
probability p of survival for all points involved, then the 
probability of at least one hash surviving per anchor point 
is  p*[1-(1-p)F].  For reasonably large values of F, e.g. 
F>10, and reasonable values of p, e.g. p>0.1, we have 
approximately  

p ≈ p*[1-(1-p)F] 
so we are actually not much worse off than before. 
 
We see that by using combinatorial hashing, we have 
traded off approximately 10 times the storage space for 
approximately 10000 times improvement in speed, and a 
small loss in probability of signal detection. 
 



Different fan-out and density factors may be chosen for 
different signal conditions.  For relatively clean audio, e.g. 
for radio monitoring applications, F may be chosen to be 
modestly small and the density can also be chosen to be 
low, versus for the somewhat more challenging mobile 
phone consumer application.  The difference in processing 
requirements can thus span many orders of magnitude. 

2.3 Searching and Scoring 
To perform a search, the above fingerprinting step is 
performed on a captured sample sound file to generate a set 
of hash:time offset records.  Each hash from the sample is  
used to search in the database for matching hashes.  For 
each matching hash found in the database, the 
corresponding offset times from the beginning of the 
sample and database files are associated into time pairs.  
The time pairs are distributed into bins according to the 
track ID associated with the matching database hash.   
 
After all sample hashes have been used to search in the 
database to form matching time pairs, the bins are scanned 
for matches.  Within each bin the set of time pairs 
represents a scatterplot of association between the sample 
and database sound files.   If the files match, matching 
features should occur at similar relative offsets from the 
beginning of the file, i.e. a sequence of hashes in one file 
should also occur in the matching file with the same 
relative time sequence.  The problem of deciding whether a 
match has been found reduces to detecting a significant 
cluster of points forming a diagonal line within the 
scatterplot.  Various techniques could be used to perform 
the detection, for example a Hough transform or other 

robust regression technique.  Such techniques are overly 
general, computationally expensive, and susceptible to 
outliers. 
 
Due to the rigid constraints of the problem, the following 
technique solves the problem in approximately N*log(N) 
time, where N is the number of points appearing on the 
scatterplot.  For the purposes of this discussion, we may 
assume that the slope of the diagonal line is 1.0.  Then 
corresponding times of matching features between 
matching files have the relationship  

tk’=tk+offset, 
where tk’ is the time coordinate of the feature in the 
matching (clean) database soundfile and tk is the time 
coordinate of the corresponding feature in the sample 
soundfile to be identified.  For each (tk’,tk) coordinate in the 
scatterplot, we calculate  

δtk=tk’-tk. 
Then we calculate a histogram of these  δtk values and scan 
for a peak. This may be done by sorting the set of δtk values 
and quickly scanning for a cluster of values.  The 
scatterplots are usually very sparse, due to the specificity of 
the hashes owing to the combinatorial method of generation 
as discussed above.  Since the number of time pairs in each 
bin is small, the scanning process takes on the order of  
microseconds per bin, or less.  The score of the match is the 
number of matching points in the histogram peak.  The 
presence of a statistically significant cluster indicates a 
match.  Figure 2A illustrates a scatterplot of database time 
versus sample time for a track that does not match the 
sample.  There are a few chance associations, but no linear 
correspondence appears.  Figure 3A shows a case where a 

Figure 4:  Recognition rate -- Additive Noise
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significant number of matching time pairs appear on a 
diagonal line.  Figures 2B and 3B show the histograms of 
the δtk values corresponding to Figures 2A and 3B. 
 
This bin scanning process is repeated for each track in the 
database until a significant match is found. 
 
Note that the matching and scanning phases do not make 
any special assumption about the format of the hashes.  In 
fact, the hashes only need to have the properties of having 
sufficient entropy to avoid too many spurious matches to 
occur, as well as being reproducible.  In the scanning phase 
the main thing that matters is for the matching hashes to be 
temporally aligned. 

2.3.1 Significance 
As described above, the score is simply the number of 
matching and time-aligned hash tokens.  The distribution of 
scores of incorrectly-matching tracks is of interest in 
determining the rate of false positives as well as the rate of 
correct recognitions.  To summarize briefly, a histogram of 
the scores of incorrectly-matching tracks is collected.  The 
number of tracks in the database is taken into account and a 
probability density function of the score of the highest-
scoring incorrectly-matching track is generated.  Then an 
acceptable false positive rate is chosen (for example 0.1% 
false positive rate or 0.01%, depending on the application), 
then a threshold score is chosen that meets or exceeds the 
false-positive criterion. 

3 Performance 

3.1 Noise resistance 
The algorithm performs well with significant levels of 
noise and even non-linear distortion.  It can correctly 
identify music in the presence of voices, traffic noise, 
dropout, and even other music.  To give an idea of the 
power of this technique, from a heavily corrupted 15 
second sample, a statistically significant  match can be 
determined with only about 1-2% of the generated hash 
tokens actually surviving and contributing to the offset 
cluster.  A property of the scatterplot histogramming 
technique is that discontinuities are irrelevant, allowing 
immunity to dropouts and masking due to interference.  
One somewhat surprising result is that even with a large 
database, we can correctly identify each of several tracks 
mixed together, including multiple versions of the same 
piece, a property we call “transparency”. 
 
Figure 4 shows the result of performing 250 sample 
recognitions of varying length and noise levels against a 
test database of 10000 tracks consisting of popular music.  
A noise sample was recorded in a noisy pub to simulate 
“real-life” conditions.  Audio excerpts of 15, 10, and 5 
seconds in length were taken from the middle of each test 
track, each of which was taken from the test database.  For 
each test excerpt, the relative power of the noise was 
normalized to the desired signal-to-noise ratio, then linearly 
added to the sample.  We see that the recognition rate drops 

Figure 5:  Recognition rate -- Additive noise + GSM compression
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to 50% for 15, 10, and 5 second samples at approximately 
-9, -6, and -3 dB SNR, respectively   Figure 5 shows the 
same analysis, except that the resulting music+noise 
mixture was further subjected to GSM 6.10 compression, 
then reconverted to PCM audio.  In this case, the 50% 
recognition rate level for 15, 10, and 5 second samples 
occurs at approximately -3, 0, and +4 dB SNR.  Audio 
sampling and processing was carried out using 8KHz, 
mono, 16-bit samples. 

3.2 Speed 
For a database of about 20 thousand tracks implemented on 
a PC, the search time is on the order of 5-500 milliseconds, 
depending on parameters settings and application.  The 
service can find a matching track for a heavily corrupted 
audio sample within a few hundred milliseconds of core 
search time.  With “radio quality” audio, we can find a 
match in less than 10 milliseconds, with a likely 
optimization goal reaching down to 1 millisecond per 
query. 

3.3 Specificity and False Positives 
The algorithm was designed specifically to target 
recognition of sound files that are already present in the 
database.  It is not expected to generalize to live recordings.  
That said, we have anecdotally discovered several artists in 
concert who apparently either have extremely accurate and 
reproducible timing (with millisecond precision), or are 
more plausibly lip synching.   
The algorithm is conversely very sensitive to which 
particular version of a track has been sampled.  Given a 
multitude of different performances of the same song by an 
artist, the algorithm can pick the correct one even if they 
are virtually indistinguishable by the human ear. 
We occasionally get reports of false positives.  Often times 
we find that the algorithm was not actually wrong since it 
had picked up an example of “sampling,” or plagiarism.  As 
mentioned above, there is a  tradeoff between true hits and 
false positives, and thus the maximum allowable 
percentage of false positives is a design parameter that is 
chosen to suit the application. 
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