Recursve Make Considered Harmful

Peter Miller
millerp@canb.auug.org.au

ABSTRACT

For large UNIX projects, the traditional method afiloling the project is to use recwsi
male. On some projects, this results in build times which are unacceptably large, when

all you want to do is change one file.

In examining the source ofviérydong huild

times, it became evident that a number of apparently unrelated problems combine to pro-
duce the delgyout on analysis all hee the same root cause.

This paper explores a number of problemgamding the use of recurs male, and
shavs that thg are all symptoms of the same problem. Symptoms that the UNIX com-
munity hare long accepted as a fact of life, but which need not be enduyelbrger.
These problems include recusimakes which tale “forever” to work out that the need
to do nothing, recurgé makes which do too much, or too little, recursimakes which

are werly sensitve o changes in the source code and require conbtakéfile

vention to keep them working.

inter-

The resolution of these problems can be found by looking at mvakédoes, from first
principles, and then analyzing the effects of introducing reeursaketo this actvity.
The analysis shows that the problem stems from the artificial partitioning afittiénto
separate subsetJhis, in turn, leads to the symptoms describ&dl.asoid the symptoms,
it is only necessary toveid the separation; to use a singlmkesession to build the
whole project, which is not quite the same as a sikiglkeefile

This conclusion runs counter to much accumulated folk wisdom in building large projects
on UNIX. Some of the main objections raised by this folk wisdom gaenimed and
shavn to be unfoundedThe results of actual use are far more encouraging, with routine
development performance impvements significantly faster than intuition may indicate,
and without the intuitvely expected compromise of modularithe use of a whole
projectmakeis not as difficult to put into practice as it may at first appear.

Miller, PA. (1998),Recursive Ma& Considered Harmful,
AUUGN Journal of AUUG Inc., 19(1), pp. 14-25.

1. Introduction

For lage UNIX software declopment projects,
the traditional methods ofullding the project use
what has come to be known as “recugsnake”
This refers to the use of a hierayadf directories
containing source files for the modules which
malke up he project, where each of the sub-direc-
tories contains aVakefile which describes the
rules and instructions for threakeprogram. The
complete project Uild is done by arranging for
the top-leel Makefile to change directory into
each of the sub-directories and recouglsi invoke
male.

Copyright © 1997 Peter Miller

Peter Miller

10 March 2008

This paper explores some significant problems
encountered when ddoping software projects
using the recurge make technique. Asimple
solution is ofered, and some of the implications
of that solution are explored.

Recursve makeresults in a directory tree which
looks something li& this:

Page 1

AUUGN'97

(7 Project
[Makefile
(CJmodulel
[Makefile
[sourcel.c

[etc...
(ymodule2

[Makefile
[source2.c

[etc...

This hierarcly of modules can be nested arbitrar
ily deep. Real-world projects often use tw and
three-level structures.

1.1. AssumedKnowledge

This paper assumes that the readeansilfar with
developing software on UNIX, with thenakepro-
gram, and with the issues of C programming and
include file dependencies.

This paper assumes that yowéanstalled GNU
Make on your system and are moderatedyriiliar
with its features. Some features ahake
described belw may not be waailable if you are
using the limited version supplied by yowndor.

2. TheProblem

There are numerous problems with reoesi
make and the are usually obserd daily in prac-
tice. Someof these problems include:

 Itis very hard to get therder of the recursion
into the sub-directories correcThis order is
very unstable and frequently needs to be manu-
ally “tweaked” Increasing the number of
directories, or increasing the depth in the direc-
tory tree, cause this order to be increasingly
unstable.

It is often necessary to do more than one pass
over the sub-directories touild the whole sys-
tem. This,naturally leads to extendeduld
times.

* Because theuilds tale so bng, some depen-
dengy information is omitted, otherwise \zi#-
opment builds ta& unreasonable lengths of
time, and the delopers are unprodugt.
This usually leads to things not being updated
when thg need to be, requiring frequent
“clean” huilds from scratch, to ensureveey-
thing has actually been built.

» Because intedirectory dependencies are either
omitted or too hard to xress, theMake-
files are often written to lild too mud to

Peter Miller

10 March 2008

Recursie Make Considered Harmful

ensure that nothing is left out.

» The inaccuragof the dependencies, or the sim-
ple lack of dependencies, can result in a prod-
uct which is incapable of building cleanly
requiring the build process to be carefully
watched by a human.

* Related to the ab®, some projects are inca-
pable of taking advantage oénous “parallel
make” impementations, because the build does
patently silly things.

Not all projects gperience all of these problems.

Those that do experience the problems may do so

intermittently and dismiss the problems as une

plained “one off” quirks. This paper attempts to

bring together a range of symptoms obserwesl o

long practice, and presents a systematic analysis

and solution.

It must be emphasized that this paper does not
suggest thatmake itself is the problem. This
paper is working from the premise timakedoes

not have a lug, thatmakedoesnot have a esign
flaw. The problem is not imakeat all, but rather

in the input gien to make - the way makeis
being used.

3. Analysis

Before it is possible to address these seemingly
unrelated problems, it is first necessary to under
stand whatmakedoes and hw it does it. It is
then possible to look at the effects recuesnake
has on hownakebehaves.

3.1. WholeProject Make

Make is an expert systemYou gve it a set of
rules for hav to construct things, and a target to
be constructed. The rules can be decomposed
into pair-wise ordered dependencies between
files. Maketakes the rules and determinesiwhio

build the given target. Onceit has determined
how to construct the target, it proceeds to do so.

Make determines he to build the target by con-
structing adirected acyclic gaph,the DAG famil-

iar to may Computer Science student$he \er-

tices of this graph are the files in the system, the
edges of this graph are the infide dependencies.
The edges of the graph are directed because the
pairwise dependencies are ordered; resulting in
an acyclic graph — things which look li& loops

are resolved by the direction of the edges.

This paper will use a smalkample project for its
analysis. Whilehe number of files in thisxam-
ple is small, there is sufficient complexity to

Page 2

AUUGN'97

demonstrate all of the ab® recursive makeprob-
lems. Firsthowever, the project is presented in a
non-recursie form.

(7 Project
[Makefile
[] main.c
[parse.c
[parse.h

The Makefile
this:

in this small project looks li&

OBJ = main.o parse.o
prog: $(OBJ)
$(CC) -0 $@ $(0BJ)
main.o: main.c parse.h
$(CC) -c main.c
parse.o: parse.c parse.h
$(CC) -c parse.c

Some of the implicit rules ahakeare presented
here eplicitly, to assist the reader in ceerting
theMakefile into its equalent DAG.

The abwe Makefile
the following form:

@ parse.o

This is anacyclic graph because of the aw®
which express the ordering of the relationship
between the fileslf there wasa drcular depen-
deng according to the arrows, it would be an
error.

can be dran as a BG in

Note that the object filesq() are dependent on
the include files.fp) even though it is the source
files (.c) which do the includingThis is because
if an include file changes, it is the object files
which are out-of-date, not the source files.

The second part of whatakedoes it to perform a
postorder traversal of the [AG. That is, the
dependencies are visited fir§the actual order of
traversal is undefined, but mostakeimplementa-
tions work devn the graph from left to right for
edges bel the same ertex, and most projects
implicitly rely on this behagior. The last-time-

Peter Miller

10 March 2008

Recursie Make Considered Harmful

modified of each file is examined, and higher files
are determined to be out-of-date ifyaof the
lower files on which the depend are younger
Where a file is determined to be out-of-date, the
action associated with the reéat graph edge is
performed (in the ab@ example, a compile or a
link).

The use of recurge makeaffects both phases of
the operation ofmake:it causesnaketo construct
an inaccurate BG, and it forcesmaketo traverse
the DAG in an happropriate order.

3.2. Recursve Make

To examine the effects of recuvsi makes, the
abore example will be artificially segmented into
two modules, each with itsven Makefile , and

a op-level Makefile used to imoke each of the
moduleMakefile s.

This example is intentionally artificial, and thor
oughly so. However, dl “modularity” of all
projects is artificial, to somexnt. Considerfor
mary projects, the linkr flattens it all out agn,
right at the end.

The directory structure is as follows:

(7 Project
[Makefile
(—ant
T: [Makefile

[main.c
(bee
[] Makefile
[parse.c
[parse.h
The top-leel Makefile often looks a lot lik a
shell script:

MODULES = ant bee

all:
for dir in $(MODULES); do \
(cd $$dir; S{MAKE} all); \
done

Theant/Makefile

looks like this:

all: main.o

main.o: main.c ../bee/parse.h
$(CC) -1../bee -c main.c

and the equialent DAG looks like this:

Page 3

AUUGN'97

Thebee/Makefile looks like this:

OBJ = ../ant/main.o parse.o
all: prog
prog: $(OBJ)
$(CC) -0 $@ $(0BJ)
parse.o: parse.c parse.h
$(CC) -c parse.c

and the equilent DAG looks like this:

@ parse.o

Take a dose look at the BGs. Noticehow nei-

ther is complete — there are vertices and edges
(files and dependencies) missing from both
DAGs. Whenthe entire build is done from the
top level, everything will work.

But what happens when small changes occur?
For example, what would happen if tiparse.c

and parse.h files were generated from a
parse.y yacc grammar?This would add the
following lines to thebee/Makefile

parse.c parse.h: parse.y
$(YACC) -d parse.y
mv y.tab.c parse.c
mv y.tab.h parse.h

And the equialent DAG changes to look lik this:

Peter Miller

10 March 2008

Recursie Make Considered Harmful

@ parse.o

This change has a simple effect:pérse.y is
edited,main.o will not be constructed correctly
This is because theAs for ant knows about
only some of the dependenciesméin.o , and
the DAG for bee knows none of them.

To understand withis happens, it is necessary to
look at the actionsnakewill take from the top
level. Assume that the project is in a self-consis-
tent state.Now edit parse.y in such a way that
the generategarse.h file will have ron-trivial
differences. Haever, when the top-keel makeis
invoked, firstant and thenbee is visited. But
ant/main.o is not recompiled, because
bee/parse.h has not yet been regenerated and
thus does not yet indicate thatin.o is out-of-
date. Itis not untilbee is visited by the recunrge
make that parse.c and parse.h are recon-
structed, followed byarse.o . When the pro-
gram is linked main.o andparse.o are non-
trivially incompatible. That is, the program is
wrong.

3.3. Traditional Solutions

There are three traditional &z for the abee
“glitch.”

3.3.1. Reshuffle

The first is to manually tweak the order of the
modules in the top-lel Makefile . But why is
this tweak required at alltsn't makesupposed to
be an expert system makesomehw flaned,

or did something else go wrong?

To answer this question, it is necessary to look,
not at the graphs, but tleeder of taversalof the
graphs. Inorder to operate correctlpnakeneeds

to perform apostordertraversal, but in separating
the DAG into two pieces, make has not been
allowed to traverse the graph in the necessary
order - instead the project has dictated an order of

Page 4

AUUGN'97

traversal. Anorder which, when you consider the
original graph, is plaimnvrong. Tweaking the top-
level Makefile corrects the order to one similar
to that whichmake could hae wsed. Untilthe
next dependelyds added...

Note that make -j " (parallel build) ivalidates
mary of the ordering assumptions implicit in the
reshufle solution, making it useless. And then
there are all of the sub-mek all doing their
builds in parallel, too.

3.3.2. Repetition

The second traditional solution is to neakore
than one pass in the top+ Makefile , some-
thing like this:

MODULES = ant bee

all:
for dir in $(MODULES); do \
(cd $$dir; S{MAKE} all); \
done
for dir in $(MODULES); do \
(cd $$dir; S{MAKE} all); \
done

This doubles the length of time it &&kto perform
the huild. Butthat is not all: there is no guarantee
that two passes are enoughithe upper bound of
the number of passes is nate proportional to

the number of modules, it is instead proportional
to the number of graph edges which cross module
boundaries.

3.3.3. Overkill

We havealready seen an example ofwhoecur-
sive makecan build too little, but another com-
mon problem is to build too much. The third tra-
ditional solution to the abve ditch is to add een
morelines toant/Makefile

.PHONY: ../bee/parse.h
../bee/parse.h:
cd ../bee; \
make clean; \
make all

This means that whewmer main.o is made,
parse.h will always be considered to be out-of-
date. Allof bee will always be rebuilt including
parse.h , and so main.o will always be
rebuilt, even if everything was self consistent.

Note that make -j " (parallel build) ivalidates
mary of the ordering assumptions implicit in the
overkill solution, making it useless, because all of

Peter Miller

10 March 2008

Recursie Make Considered Harmful

the sub-ma&s are all doing their builds ("clean”
then "all") in parallel, constantly interfering with
each other in non-deterministic ways.

4. Prevention

The abwee analysis is based on one simple action:
the DAG was artificially separated into incom-

plete pieces.This separation resulted in all of the
problems familiar to recurge makebuilds.

Did makeget it wrong?No. Thisis a case of the
ancient GIGO principle:Garbage In, Garbaye
Out. IncompleteMakefile s ae wrong Make-
file s.

To avoid these problems, ddnbreak the BAG
into pieces; instead, use oMakefile for the
entire project.lt is not the recursion itself which
is harmful, it is the crippledMakefile s which
are used in the recursion which aveong It is
not a deficieng of makeitself that recursie make
is broken, it does the best it can with thevéd
input it is gven.

“But, but, lt... You cant do that!” |

hear you cry “A dngle Makefile

is too big it's unmaintainable it's

too had to write the rules, you'll run

out of memoryl only want to lild

my little bit, the kild will take too

long. It's just not practical.

These are valid concerns, andytifieequently lead
makeusers to the conclusion that re-working their
build process does not ¥ any &ort- or long-
term benefits. This conclusion is based on
ancient, enduring, false assumptions.

The following sections will address each of these
concerns in turn.

4.1. ASingleMakefile

If the entire project bild description were placed
into a singleMakefile this would certainly be
true, havever modernmakeimplementations hee
include statements. Byncluding a relgant frag-
ment from each module, the total size of the
Makefile and its include files need be noder
than the total size of thdakefile s in the recur
sive @se.

Is Too Big

4.2. ASingleMakefile Is Unmaintainable

The compleity of using a single top-lel Make-

file which includes a fragment from each mod-
ule is no more compethan in the recurge ase.
Because the BG is mot sgmented, this form of
Makefile becomes less compleand thusnore

Page 5

AUUGN'97

maintainable, simply because fewer “tweaks” are
required to keep it working.

Recursve Makefiles have a geat deal of repe-
tition. Mary projects sole this by using include
files. By using a singleMakefile for the
project, the need for the “common” include files
disappears - the singMakefile is the com-
mon part.

4.3. It's Too Hard To Write The Rules

The only change required is to include the direc-
tory part in filenames in a number of plac&is

is because thenakeis performed from the top-
level directory; the current directory is not the one
in which the file appearsWhere the output file is
explicitly stated in a rule, this is not a problem.

GCC allows a0 option in conjunction with the
-c option, and GNU Ma& knows this. This
results in the implicit compilation rule placing the
output in the correct placeOlder and dumber C
compilers, hwever, may not allav the-o option
with the-c option, and will lege the object file
in the top-lee directory (.e. the wrong direc-
tory). Thereare three ways for you to fix this: get
GNU Make and GCC, werride the built-in rule
with one which does the right thing, or complain
to your vendor.

Also, K&R C compilers will start the double-
guote include path#{nclude " filename.h)
from the current directoryThis will not do what
you want. ANSIC compliant C compilers, o
eva, dart the double-quote include path from the
directory in which the source file appears; thus,
no source changes are required. If you tbave

an ANSI C compliant C compileyou should
consider installing GCC on your system as soon
as possible.

4.4. 10nly Want To Build My Little Bit

Most of the time, deslopers are deep within the
project tree and tlyeedit one or two files and then
run maketo compile their changes and try them
out. Theg may do this dozens or hundreds of
times a day Being forced to do a full project
build every time would be absurd.

Developers alvays hare the option of gring make

a Yecific taget. Thisis always the case, #'just
that we usually rely on the daflt target in the
Makefile in the current directory to shorten the
command line for us. Building “my little bit” can
still be done with a whole projedtlakefile
simply by using a specific target, and an alias if
the command line is too long.

Peter Miller

10 March 2008

Recursie Make Considered Harmful

Is doing a full project buildwery time so absurd?

If a change made in a module has repercussions in
other modules, because there is a dependiec
developer is unware of (but theMakefile s
awae of), isnt it better that the desloper find out

as early as possible? Dependencies fiks will

be found, because thedB is more complete than

in the recursie ase.

The deeloper is rarely a seasoned old salt who
knows every one of the million lines of code in
the product. More likely the daeloper is a short-
term contractor or a juniorYou dont want impli-
cations lile these to blav up &ter the changes are
integrated with the master source, you want them
to blov up on he deeoper in some nice safe
sand-box farwaay from the master source.

If you want to mak “just your little” bit because
you are concerned that performing a full project
build will corrupt the project master source, due
to the directory structure used in your project, see
the “ProjectsrersusSand-Boxes” section belo

4.5. TheBuild Will Tak e Too Long

This statement can be made from one af per-
spectves. First,that a whole projectnake even
when &erything is up-to-date, inevitably takes a
long time to perform. Secondly that these
inevitable delays are unacceptable when eelde
oper wants to quickly compile and link the one
file that thg havechanged.

4.5.1. Poject Builds

Consider a hypothetical project with 1000 source
(.c) files, each of which has its calling intscé
defined in a corresponding includé { file with
defines, type declarations and function prototypes.
These 1000 source files include theivnointer
face definition, plus the interface definitions of
ary other module thg may call. These 1000
source files are compiled into 1000 object files
which are then linked into axecutable program.
This system has some 3000 files whichkemust

be told about, and be told about the include
dependencies, and alsgpdore the possibility that
implicit rules (y - .c for example) may be
necessary.

In order to liild the DAG, makemust “stat” 3000
files, plus an additional 2000 files or so, depend-
ing on which implicit rules youmake knows
about and youMakefile has left enabledOn

the authols humble 66MHz 486 this takes about
10 seconds; on na# dsk on faster platforms it
goes gen faster With NFS ozer 10MB Ethernet

Page 6

AUUGN'97

it takes about 10 seconds, no matter what the plat-
form.

This is an astonishing statistiddmagine being
able to do a single file compile, out of 1000
source files, in only 10 seconds, plus the time for
the compilation itself.

Breaking the set of files up into 100 modules, and
running it as a recung maketakes about 25 sec-
onds. Therepeated process creation for the sub-
ordinatemakeinvocations tak quite a long time.

Hang on a minute! On real-world projects with
less than 1000 files, it takes awfal lot longer
than 25 seconds faonaketo work out that it has
nothing to do.For some projects, doing it in only
25 minutes wuld be an impreement! Theabove
result tells us that it is not the number of files
which is slowing us down (that only takes 10 sec-
onds), and it is not the repeated process creation
for the subordinatenake invocations (that only
takes another 15 seconds). So just whaaking

so long?

The traditional solutions to the problems intro-
duced by recurge makeoften increase the num-
ber of subordinatenakeinvocations beyond the
minimum described here;g.to perform multiple
repetitions (3.3.2), or to verkill cross-module
dependencies (3.3.3). These caretakong time,
particularly when combined, but do not account
for some of the more spectacular build times;
what else is taking so long?

Compleity of the Makefile is what is taking
so long. This is ceered, belav, in the Efficient
Makefilessection.

4.5.2. Deelopment Builds

If, as in the 1000 file example, it only takes 10
seconds to figure out which one of the files needs
to be recompiled, there is no serious threat to the
productvity of developers if thg do a whole-
project make as opposed to a module-specific
make The adwantage for the project is that the
module-centric desloper is reminded at refent
times (and only relent times) that their work has
wider ramifications.

By consistently using C include files which con-
tain accurate interface definitions (including func-
tion prototypes), this will produce compilation
errors in may of the cases which would result in
a defectve poduct. By doing whole-project
builds, developers discaer such errors very early
in the deelopment process, and can fix the prob-
lems when thgare least expengs.

Peter Miller

10 March 2008

Recursie Make Considered Harmful

4.6. You'll Run Out Of Memory

This is the most interesting respong@nce long
ago, on a CPUatf, far avay, it may even have
been true. When Feldman [feld78] first wrote
makeit was 1978 and he was using a PDP11.
Unix processes were limited to 64KB of data.

On such a computethe abee oject with its
3000 files detailed in the whole-projeltake-
file , would probablynot allow the DAG and
rule actions to fit in memory.

But we are not using PDPllsyamore. The
physical memory of modern computersceeds
10MB for small computers, and virtual memory
often exceeds 100MB. It is going to &ala
project with hundreds of thousands of source files
to exhaust virtual memory on small modern
computer As the 1000 source file example ésk
less than 100KB of memory (try it, | did) it is
unlikely that ay project manageable in a single
directory tree on a single disk wilkleaust your
computers memory.

4.7. Why Not Fix The DAG In The Modules?

It was shown in the abe dscussion that the
problem with recursie makeis that the BGs ae
incomplete. Itfollows that by adding the missing
portions, the problemsauld be resolved without
abandoning the existing recwsimake invest-
ment.

» The deeloper needs to remember to do this.
The problems will not affect the ddoper of
the module, it will affect the delopers of
other modules. Theras no trigger to remind
the deeloper to do this, other than the ire of
fellow devdopers.

It is difficult to work out where the changes
need to be made. Potentiallyeey Makefile
in the entire project needs to be examined for
possible modifications. Of course, you can
wait for your fellow devdopers to find them for
you.

» The include dependencies will be recomputed
unnecessarilyor will be interpreted incorrectly
This is becausenakeis string based, and thus
“” and “./ant” are tw dfferent places,ven

when you are in thant directory This is of

concern when include dependencies are auto-
matically generated - as there for all lage

projects.

By making sure that eacklakefile is com-
plete, you arxie & the point where thé/lake-
file for at least one module contains the

Page 7

AUUGN'97

equialent of a whole-projecMakefile (recall

that these modules form a single project and are
thus inter-connected), and there is no need for the
recursion ayp more.

5. Efficient Makefiles

The central theme of this paper is themantic
side-efects of artificially separating iakefile

into the pieces necessary to perform a recersi
make Howeve, once you hee a hrge number of
Makefile s, the speed at whiahakecan inter
pret this multitude of files also becomes an issue.

Builds can tak “forever” for both these reasons:
the traditional fies for the separateddG may be
building too muchand your Makefile may be
inefficient.

5.1. Deferred Evaluation

The text in aMakefile must someho be rad
from a text file and understood Inyakeso that
the DAG can be constructed, and the specified
actions attached to the edgerhis is all kept in
memory.

The input language foMakefile s is decep-
tively simple. A crucial distinction that often
escapes both novices andperts alile is that
makeés input language igext basedas opposed to
token based, as is the case for C Wvka Make
does the &ry least possible to process input lines
and stash themagy in memory.

As an e&le of this, consider the folling
assignment:

OBJ = main.o parse.o

Humans read this as the variable OBJ being
assigned tw filenames “main.o” and “parse.o”.
But makedoes not see it thatay. Instead OBJ

is assigned thetring “main.o parse.o”. It gets
worse:

SRC = main.c parse.c
OBJ = $(SRC:.c=.0)

In this case humansxgect maketo assign tw
filenames to OBJ, li makeactually assigns the
string “$(SRC:.c=.0)". This is because it is a
macro language with deferred vauation, as
opposed to one with variables and immediate
evduation.

If this does not seem too problematic, consider
the followingMakefile

Peter Miller

10 March 2008

Recursie Make Considered Harmful

SRC = $(shell echo 'Ouch!"\
1>&2 ; echo *.[cy])
oBJ =\
$(patsubst %.c,%.0,\
$(filter %.¢,$(SRC))) \
$(patsubst %.y,%.0,\
$(filter %.y,$(SRC)))
test: $(OBJ)
$(CC) -0 $@ $(OBJ)

How mary times will the shell command be
executed? Ouch! It will be executedtwicejust to
construct the BG, and a furthertwo times if the
rule needs to bexecuted.

If this shell command does yhing comple& or
time consuming (and it usually does) it will &k
four times longer than you thought.

But it is worth looking at the other portions of that
OBJ macro. Each time it is named, a huge
amount of processing is performed:

* The argument tcshell is a single string (all
built-in-functions tale a s$ngle string agu-
ment). Thestring is &ecuted in a sub-shell,
and the standard output of this command is
read back in, translating newlines into spaces.
The result is a single string.

» The argument tdilter is a single string.This
argument is broken into twdrings at the first
comma. Theséwo grings are then each bro-
ken into sub-strings separated by spacéhe
first set are the patterns, the second set are the
filenames. Thenfor each of the pattern sub-
strings, if a filename sub-string matches it, that
filename is included in the outpuOnce all of
the output has been found, it is re-assembled
into a single space-separated string.

e The argument tgoatsubstis a single string.
This argument is bran into three strings at the
first and second commadhe third string is
then broken into sub-strings separated by
spaces, these are the filenam€&hen, for each
of the filenames which match the first string it
is substituted according to the second stritig.

a filename does not match, it is passed through
unchanged. Oncall of the output has been
generated, it is re-assembled into a single
space-separated string.

Notice hav mary times those strings are disas-
sembled and re-assembled. Noticewhmany
ways that happensThis is slow The ample
here names just wfiles but consider hoineffi-
cient this would be for 1000 fileDoing it four
times becomes decidedly inefficient.

Page 8

AUUGN'97

If you are using a dumimakethat has no substitu-
tions and no wbilt-in functions, this cannot bite
you. Buta mpdernmakehas lots of built-in func-
tions and canwen invoke shell commands on-the-
fly. The semantics ahakés text manipulation is
such that string manipulation makeis very CPU
intensive, compared to performing the same string
manipulations in C or AWK.

5.2. ImmediateEvaluation

Modern makeimplementations h&e a immedi-
ate eaduation “=" assignment operator The
abore example can be re-written as

SRC := $(shell echo 'Ouch!"\
1>&2 ; echo *.[cy])
OBJ =\
$(patsubst %.c,%.0,\
$(filter %.¢,$(SRC))) \
$(patsubst %.y,%.0,\
$(filter %.y,$(SRC)))
test: $(OBJ)
$(CC) -0 $@ $(OBJ)

Note thatbothassignments are immediateskeia-
tion assignments. If the first were not, the shell
command would afays be @ecuted twice. If the
second were not, thexgensive sibstitutions
would be performed at least twice and possibly
four times.

As a rule of thumb: alays use immediatevalua-
tion assignment unless you knowinglyamt
deferred eauation.

5.3. IncludeFiles

Many Makefile s perform the same text pro-
cessing (the filters ale, for example) for eery
singlemakerun, but the results of the processing
rarely change Wherever practical, it is more &f
cient to record the results of thexttgprocessing
into a file, and hae the Makefile include this
file.

5.4. Dependencies

Don’t be miserly with include files.They are rel-
atively inexpensve © read, compared to
$(shell) , so nore rather than less doesn’
greatly affect efficienc

As an example of this, it is first necessary to
describe a useful feature of GNU Make: once a
Makefile has been read in, if gnof its
included files were out-of-date (or do not yet
exist), they are re-built, and thermmake starts
aguin, which has the result thamakeis nav

Peter Miller

10 March 2008

Recursie Make Considered Harmful

working with up-to-date include filesThis fea-
ture can bexploited to obtain automatic include
file dependenctracking for C sourcesThe olvi-
ous way to implement it, hoever, has a subtle
flaw.

SRC := $(wildcard *.c)
OBJ := $(SRC:.c=.0)
test: $(OBJ)
$(CC) -0 $@ $(OBJ)
include dependencies
dependencies: $(SRC)
depend.sh $(CFLAGS) \
$(SRC) > $@

Thedepend.sh script prints lines of the form

file.o: file.c includeh ...

The most simple implementation of this is to use
GCC, but you will need an equélent awk script
or C program if you hae a dfferent compiler:

#l/bin/sh
gcc -MM -MG "$@"

This implementation of tracking C include depen-
dencies has seral serious flas, but the one
most commonly disared is that thedepen-
dencies file does not, itself, depend on the C
include files. That is, it is not redfit if one of the
include files changes. There is no edge in the
DAG joining thedependencies vertex to any

of the include file ertices. If an include file
changes to include another file (a nested include),
the dependencies will not be recalculated, and
potentially the C file will not be recompiled, and
thus the program will not be re-built correctly.

A classic lnild-too-little problem, caused by\gi
ing makeinadequate information, and thus caus-
ing it to kuild an inadequate AG and reach the
wrong conclusion.

The traditional solution is to build too much:

SRC := $(wildcard *.c)
OBJ := $(SRC:.c=.0)
test: $(OBJ)
$(CC) -0 $@ $(0BJ)
include dependencies
.PHONY: dependencies
dependencies: $(SRC)
depend.sh $(CFLAGS) \
$(SRC) > $@
Now, even if the project is completely up-do-date,
the dependencies will be redli. For a lage

Page 9

AUUGN'97

project, this is very wasteful, and can be a major
contritutor to maketaking “forever” to work out
that nothing needs to be done.

There is a second problem, and that is thatyf an
one of the C files changes|l of the C files will
be re-scanned for include dependenci€his is
as inefficient as héng aMakefile which reads

prog: $(SRC)
$(CC) -0 $@ $(SRC)

What is needed, in exact analogy to the C case, is
to have ar intermediate form. This is usually
given a “.d " suffix. By exploiting the fact that
more than one file may be named in an include
line, there is no need to “link” all of thed' " files
together:

SRC := $(wildcard *.c)
OBJ := $(SRC:.c=.0)
test: $(OBJ)

$(CC) -0 $@ $(OBJ)
include $(OBJ:.0=.d)
%.d: %.c

depend.sh $(CFLAGS) \

$*.c>3$@

This has one more thing to fix: just as the object
(.0) files depend on the source files and the
include files, so do the dependgiia) files.

file.d file.o:

This means tinkering with theepend.sh script
again:

file.c includeh

#!/bin/sh
gcc -MM -MG "$@" |
sed -e 's@"\(*\W\.o:@\1.d \1.0:@’

This method of determining include file depen-
dencies results in thdakefile including more
files than the original methodubopening files is
less apensve than rebuilding all of the depen-
dencies eery time. Typically a deeloper will
edit one or tw files before redbilding; this
method will reliild the exact dependeng file
affected (or more than one, if you edited an
include file). On balance, this will use less CPU,
and less time.

In the case of a build where nothing needs to be
done, make will actually do nothing, and will
work this out very quickly.

However, the abw®e technique assumes your
project fits enitrely within the one directoryor
large projects, this usually ignthe case. This

Peter Miller

10 March 2008

Recursie Make Considered Harmful

means tinkering with thedepend.sh
again:

script

#!/bin/sh
DIR="$1"
shift 1
case "$DIR" in
")
gcc -MM -MG "$@" |
sed -e 's@"\(*\)\.o:@\1.d \1.0:@’

5
gcc -MM -MG "$@" |

sed -e "s@"\(*\)\.0:@$DIRA1.d \
$DIRNL.0:@"

esac

And the rule needs to change, too, to pass the
directory as the first argument, as the script
expects.

%.d: %.c
depend.sh ‘dirname $*\
$(CFLAGS) $*.c > $@

Note that thed files will be relatve o the top
level directory Writing them so that thecan be
used from an levd is possible, but beyond the
scope of this paper.

5.5. Multiplier

All of the inefficiencies described in this section
compound togetherlf you do 100Makefile
interpretations, once for each module, checking
1000 source files can tala \ery long time - if
the interpretation requires complprocessing or
performs unnecessaryowk, or both. A whole
project make on the other hand, only needs to
interpret a singl®&akefile

6. ProjectsversusSand-boxes

The abwee dscussion assumes that a project
resides under a single directory tree, and this is
often the ideal.However, the realities of wrking
with large software projects often lead to weird
and wonderful directory structures in order to
have devdopers vorking on different sections of
the project without taking complete copies and
thereby wasting precious disk space.

It is possible to see the whole-projectkepro-
posed here as impractical, because it does not
match the wolved methods of your gelopment
process.

Page 10

AUUGN'97

The whole-projectmakeproposed here doesvea
an effect on deslopment methods: it cang you
cleaner and simpler build winonments for your
developers. Byusingmakeés VPATH feature, it is
possible to coponly those files you need to edit
into your prvate work area, often called sand-
box.

The simplest explanation of what ¥PH does is

to male an aalogy with the include file search
path specified usingl pathoptions to the C com-
piler. This set of options describes where to look
for files, just as VRTH tells makewhere to look
for files.

By using VRATH, it is possible to “stack” the
sand-boxon top ofthe project master source, so
that files in the sand-box takrecedence, but it is
the union of all the files whiclmakeuses to per
form the build.

,1 Master Source,
K main.c /] Combined Vi
/ parse.y ombined View
main.c
Sand-Box parse.y
main.c / variable.c
/
variable.c !

In this environment, the sand-box has the same
tree structure as the project master sourtieis
allows developers to safely change things across
separate modules,g.if they are changing a mod-
ule interbce. Italso allows the sand-box to be
physically separate — perhaps on datiént disk,

or under their home directonjt also allows the
project master source to be read-oiflyou hae

(or would like) a rigorous check-in procedure.

Note: in addition to adding ¥PATHIine to your
development Makefile , you will also need to
add-1 options to theCFLAGSmacro, so that the
C compiler uses the same path ke does.
This is simply done with a 3-line Mafile in your
work area — set a macro, set theATI, and then
include the Makefile from the project master
source.

6.1. VPATH Semantics

For the abwe dscussion to applyou need to use
GNU male 376 or later For versions of GNU
Make arlier than 3.76, you will need aBl
Smith’s VPATH+ patch. This may be obtained
from ftp://ftp.wellfleet.com/-
netman/psmith/gmake/

Peter Miller

10 March 2008

Recursie Make Considered Harmful

The POSIX semantics o/ PATH are slightly
brain-dead, so magnother makeimplementations
are too limited. You may want to consider
installing GNU Make.

7. TheBig Picture

This section brings together all of the preceding
discussion, and presents the example project with
its separate modulesutwith a whole-project
Makefile . The directory structure is changed
little from the recursie ase, except that the
deeperMakefiles are replaced by module spe-
cific include files:

(7 Project
— [Makefile
—(ant

T: 7] module.mk
[] main.c
—(Cbee
T:) module.mk

[parse.y
L[depend.sh

TheMakefile looks like this:

MODULES := ant bee

| ook for include files in

each of the modules

CFLAGS += $(patsubst %,-1%,\
$(MODULES))

extra libraries if required

LIBS =

each module will add to this

SRC =

i nclude the description for

each module

include $(patsubst %\

%/module.mk,$(MODULES))

determine the object files

OBJ = \
$(patsubst %.c,%.0, \
$(filter %.c,$(SRC))) \
$(patsubst %.y,%.0, \

$(filter %.y,$(SRC)))

| ink the program
prog: $(OBJ)

$(CC) -0 $@ $(OBJ) $(LIBS)
i nclude the C include
dependencies
include $(OBJ:.0=.d)
calculate C include

Page 11

AUUGN'97

dependencies
%.d: %.c
depend.sh ‘dirname $*.c‘\
$(CFLAGS) $*.c > $@

This looks absurdly large, but it has all of the
common elements in the one place, so that each
of the modulesimakeincludes may be small.

Theant/module.mk file looks like:
SRC += ant/main.c
Thebee/module.mk file looks like:

SRC += bee/parse.y

LIBS +=-ly

%.c %.h: %.y
$(YACC) -d $*.y
mv y.tab.c $*.c
mv y.tab.h $*.h

Notice that the wilt-in rules are used for the C
files, hut we need special yacc processing to get
the generated file.

The saings in this example look irrelant,
because the topyel Makefile is so lage. But
consider if there were 100 modules, each with
only a fav non-comment lines, and those specifi-
cally relevant to the module.The savings soon
add up to a total size oftéess tharthe recursie
case, without loss of modularity.

The eqwialent DAG of the Makefile
of the includes looks lithis:

after all

The \ertexes and edges for the include file depen-
deng files are also present as these are important
for maketo function correctly.

Peter Miller

10 March 2008

Recursie Make Considered Harmful

7.1. SideEffects

There are a couple of desirable sidieef of
using a single Makefile.

» The GNU Male -j option, for parallel bilds,
works esen better than beforelt can find een
more unrelated things to do at once, and no longer
has some subtle problems.

» The general mak-k option, to continue asaf

as possiblewven in the face of errors, works/en

better than before. It can findem more things to
continue with.

8. Literatur e Survey

How can it be possible that we Vebeen misus-
ing makefor 20 years?How can it be possible
that behavior previously ascribed rieakes limi-
tations is in fact a result of misusing it?

The author only started thinking about the ideas
presented in this paper wheacéd with a number
of ugly build problems on utterly dérent
projects, bt with common symptoms. By step-
ping back from the individual projects, and
closely examining the thing thdnad in common,
make it became possible to see the larger pattern.
Most of us are too caught up in the minutiae of
just getting the rotten build to work that we don’
have time to spare for the big picturéspecially
when the item in question “obviously” works, and
has done so continuously for the last 20 years.

It is interesting that the problems of recuesi
makeare rarely mentioned in thery books Unix
programmers rely on for accurate, practical
advice.

8.1. TheOriginal Paper

The originalmakepaper [feld78] contains no ref-
erence to recungé male, let alone an discussion
as to the relate merits of whole projecmake
ove recursve male.

It is hardly surprising that the original paper did
not discuss recung make Unix projects at the
time usuallydid fit into a single directory.

It may be this which set the “orMdakefile in
evay directory” concept so firmly in the collec-
tive Unix development mind-set.

8.2. GNUMake

The GNU Male manual [stal93] contains weral
pages of material concerning recuesimale,
however its discussion of the merits or otherwise
of the technique are limited to the brief statement

Page 12

AUUGN'97

that

“This technique is useful when you
want to separate makefiles faanous
subsystems that compose agkr
system.”

No mention is made of the problems you may
encounter.

8.3. ManagingProjects with Make

The Nutshell Mak ook [talb91] specifically pro-
motes recurse make over whole projectmake
because

“The cleanest ay to build is to put a
separate description file in each
directory and tie them together
through a master description file that
invokes make recursively. While
cumbersome, the technique is easier
to maintain than a single, enormous
file that covers multiple directories.

(p. 65)

This is despite the boak’advice only tw para-
graphs earlier that

“makeis happiest when you keep all
your files in a single directofy(p.
64)

Yet the book &ils to discuss the contradiction in
these tw gatements, and goes on to describe one
of the traditional ways of treating the symptoms
of incomplete AGs caused by recungg make

The book may ge s a due as to wii recursve
makehas been used in this way for so mgaars.
Notice hav the abwe quotes confuse the concept
of a directory with the concept of\dakefile

This paper suggests a simple change to the mind-
set: directory trees, ever deep, are places to
store filesMakefile s ae places to describe the
relationships between those files, hoarenary.

8.4. BSDMake

The tutorial for BSD Ma& [debo88] says nothing
at all about recurge make but it is one of the fe
which actually described, t@ver briefly, the
relationship betweeniakefile and a AG (p.
30). Therds also a wonderful quote

“If makedoesnt do what you epect
it to, it's a gpod chance thenake-
file is wrong! (p. 10)

Which is a pitly summary of the thesis of this
paper.

Peter Miller

10 March 2008

Recursie Make Considered Harmful

9. Summary

This paper presents a number of related problems,
and demonstrates that yhare not inherent limita-
tions of make as is ommonly beliged, but are

the result of presenting incorrect information to
make This is the ancienGarbage In, Garbage

Out principle at vork. Becausemakecan only
operate correctly with a completedAB, the error

is in segmenting th&lakefile into incomplete
pieces.

This requires a shift in thinking: directotyees

are simply a place to hold fileglakefile s ae a
place to remember relationships between files.
Do not confuse the twbecause it is as important
to accurately represent the relationships between
files in diferent directories as it is to represent the
relationships between files in the same directory
This has the implication that there should be
exactly one Makefile for a project, but the
magnitude of the description can be managed by
using amake include file in each directory to
describe the subset of the project files in that
directory This is just as modular as having a
Makefile in each directory.

This paper has shm hov a project build and a
development liild can be equally brief for a
whole-projectmake Given this parity of time,
the gains provided by accurate dependencies
mean that this process will, iadt, be faster than
the recursie makecase, and more accurate.

9.1. Inter-dependent Projects

In organizations with a strong culture of re-use,
implementing whole-projectmake can present
challenges. Risingo these challenges, \wever,
may require looking at the bigger picture.

* A module may be shared betweenotyro-
grams because the programs are closely related.
Clearly, the two programs plus the shared mod-
ule belong to the same project (the module may
be self-contained, Ut the programs are not).
The dependencies must be explicitly stated, and
changes to the module must result in both pro-
grams being recompiled and re-letkas appro-
priate. Combiningthem all into a single
project means that whole-projechake can
accomplish this.

* A module may be shared betweerotaojects
because themust interoperate. Possiblyour
project is bigger than your current directory
structure implies. The dependencies must be
explicitly stated, and changes to the module
must result in both projects being recompiled

Page 13

AUUGN'97

and re-linked as appropriate. Combining them
all into a single project means that whole-
projectmakecan accomplish this.

 Itis the normal case to omit the edges between
your project and the operating system or other
installed third party toolsSo normal that the
are ignored in thevlakefile s in this paper
and thg are ignored in the built-in rules of
makeprograms.

Modules shared between your projects nadly f
into a similar category: if thyechange, you will
deliberately re-build to include their changes,
or quietly include their changes whe&eethe
next build may happenln either case, you do
not explicitly state the dependencies, and
whole-projectmakedoes not apply.

* Re-use may be better sed/if the module were
used as a template, andelgence between tw
projects is seen as normaDuplicating the
module in each project allows the dependencies
to be explicitly stated, but requires additional
effort if maintenance is required to the common
portion.

How to dructure dependencies in a strong re-use
ervironment thus becomes arxeecise in risk
mangyement What is the danger that omitting
chunks of the BG will harm your projects?
How vital is it to relwild if a module changes?
What are the consequencesotreluilding auto-
matically? Hev can you tell when a rebuild is
necessary if the dependencies are nqlictly
stated? Whaare the consequences ofdetting

to rebuild?

9.2. Retum On Investment

Some of the techniques presented in this paper
will improve the speed of your buildsyen if you
continue to use recuv& make These are not the
focus of this papemerely a useful detour.

The focus of this paper is that you will get more
accurate builds of your project if you use whole-
projectmakerather than recunge make

» The time formaketo work out that nothing
needs to be done will not be more, and will
often be less.

» The size and complexity of the tot®lake-
file input will not be more, and will often be
less.

» The totalMakefile input is no less modular
than in the resurgé @ase.

Peter Miller

10 March 2008

Recursie Make Considered Harmful

» The difficulty of maintaining the totdlake-
file input will not be more, and will often be
less.

The disadvantages of using whole-projetake
ove recursve makeare often un-measureddow
much time is spent figuring out whmake did
something unegected? Hev much time is spent
figuring out thamakedid something ungyected?
How much time is spent tirdeing with the hild
process? Thesactiities are often thought of as
“normal” development aerheads.

Building your project is a fundamental auty. If

it is performing poorly so ae deelopment,
delugging and testing. Building your project
needs to be so simple the newest recruit can do it
immediately with only a single page of instruc-
tions. Buildingyour project needs to be so simple
that it rarely needs gdevdopment effort at all.

Is your build process this simple?

10. Refeences

debo88: Adam de Boor (1988)PMake -
A Tutorial. University of California, Berkeley

feld78: Stuart I. Feldman (1978)Make —
A Program for Maintaining Computer Rigrams
Bell Laboratories Computing Sciencechnical
Report 57

stal93: Richard M. Stallman and Roland
McGrath (1993). GNU Make: A Pogram for
Directing Recompilation Free Software &unda-
tion, Inc.

talb91: Steve Talbott (1991). Managing
Projects with Mak, \hd Ed O'Reilly & Asso-
ciates, Inc.

Page 14

AUUGN'97

11. Aboutthe Author

Peter Miller has wrked for may years in the
software R&D industryprincipally on UNIX sys-
tems. Inthat time he has written tools such as
Aegis (a software configuration management sys-
tem) and Cook (yet anothenakeoid), both of
which are freely wailable on the Internet.Sup-
porting the use of these tools at mpamternet
sites preided the insights which led to this paper

Please visithttp://www.canb.auug.org-
.aul"millerp/ if you would like to look at
some of the authas’free software.

Peter Miller 10 March 2008

Recursie Make Considered Harmful

Page 15

