Abraham Wald’s Work on Aircraft Survivability

Marc Mangel, Francisco J. Samaniego

Journal of the American Statistical Association, Volume 79, Issue 386 (Jun., 1984),
259-267.

Your use of the JSTOR database indicates your acceptance of JISTOR’s Terms and Conditions of Use. A copy of
JSTOR’s Terms and Conditions of Use is available at http://www.jstor.org/about/terms.html, by contacting JSTOR
at jstor-info@umich.edu, or by calling JSTOR at (888)388-3574, (734)998-9101 or (FAX) (734)998-9113. No part
of a JSTOR transmission may be copied, downloaded, stored, further transmitted, transferred, distributed, altered, or
otherwise used, in any form or by any means, except: (1) one stored electronic and one paper copy of any article
solely for your personal, non-commercial use, or (2) with prior written permission of JSTOR and the publisher of
the article or other text.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

Journal of the American Statistical Association is published by American Statistical Association. Please contact
the publisher for further permissions regarding the use of this work. Publisher contact information may be obtained
at http://www jstor.org/journals/asa.html.

Journal of the American Statistical Association
©1984 American Statistical Association

JSTOR and the JSTOR logo are trademarks of JSTOR, and are Registered in the U.S. Patent and Trademark Office.
For more information on JSTOR contact jstor-info@umich.edu.

©2001 JSTOR

http://www.jstor.org/
Mon Apr 30 17:05:02 2001



Abraham Wald’s Work on Aircraft Survivability

MARC MANGEL and FRANCISCO J. SAMANIEGO*

While he was a member of the Statistical Research Group
(SRG), Abraham Wald worked on the problem of esti-
mating the vulnerability of aircraft, using data obtained
from survivors. This work was published as a series of
SRG memoranda and was used in World War II and in
the wars in Korea and Vietnam. The memoranda were
recently reissued by the Center for Naval Analyses. This
article is a condensation and exposition of Wald’s work,
in which his ideas and methods are described. In the final
section, his main results are reexamined in the light of
classical statistical theory and more recent work.

KEY WORDS: Survivability; Missing data; Approximate
methods; Maximum likelihood.

1. INTRODUCTION

December 7, 1981, was the 40th anniversary of the at-
tack on Pearl Harbor, the subsequent entry of the United
States into World War II, and also the birth of the Sta-
tistical Research Group (SRG) and the Antisubmarine
Warfare Operations Research Group (ASWORG, later
renamed the Operations Evaluation Group (OEG) and
now part of the Center for Naval Analyses). The early
histories of SRG and ASWORG/OEG were described re-
cently by their original leaders, W.A. Wallis (1980) and
P.M. Morse (1977), respectively. While in the SRG, Abra-
ham Wald developed techniques for estimating the sur-
vivability of aircraft encountering enemy ground fire.
Wald’s methods were used in World War II and by the
Navy and Air Force during the wars in Korea and Viet-
nam. Although this work was declassified many years
ago, it has not appeared in the open literature. At the end
of his historical paper, Wallis (1980) mentions that the
Wald work will soon appear in print. The papers Wald
wrote describing the methods were recently reprinted by
the Center for Naval Analyses (Wald 1980); there are
eight memoranda, totaling over 100 pages.

The primary goal of this article is to present an expo-
sitory survey of Wald’s work. Wald’s work is interesting
from several perspectives. It is of historical interest, since
the questions Wald addressed were most urgent at the
time but are substantively different from questions of in-
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terest to the defense establishment today. Second, Wald’s
work is interesting in the light of more recent develop-
ments (e.g., isotonic regression and numerical methods
in missing data problems). It is interesting in a third way,
too, for it gives us another example of a great mind in
action.

In writing this exposition, we have tried to stay as close
to Wald’s work as possible. We have followed the logical
order of the arguments in the order in which he wrote the
memoranda. The work is quite complicated, and many
of the details are quite technical. For ease of exposition,
we have eliminated as many details as possible while at-
tempting to retain cohesiveness and clarity. The reader
interested in full details can obtain copies of the original
memoranda from the Center for Naval Analyses.

In the next section, the operational and statistical prob-
lems are formulated, some sample data are given, and an
overview of the SRG memoranda is given. Section 3 is a
survey of Wald’s work, beginning with the derivation of
his basic equation. Various bounds and approximations
for the survivability are then derived. The section con-
cludes with a discussion of the effects of sampling errors.
In the last section, we reexamine Wald’s work in light of
classical statistical theory as well as more recent work.
This reexamination leads us to the general conclusion that
Wald’s treatment of these problems was definitive.

2. THE PROBLEMS AND AN OVERVIEW
OF WALD’S WORK

21 The Operational and Statistical Problems

The operational problem can be stated as follows. Air-
craft returning from missions have hits by enemy weap-
ons distributed over various parts of the plane (e.g.,
wings, tail, fuselage, etc.). The operational commander
must decide (a) what tactics would improve survivability,
and (b) how to reinforce various parts of the aircraft to
improve survivability. Reinforcement means, of course,
that the aircraft is heavier, and this impairs its mission.
The operational commander does not know the distri-
bution of hits on an aircraft that did not return. This is
the basic difficulty in making a decision.

The statistical treatment of the problems that Wald
studied is complicated by the fact that data on downed
aircraft are unobservable. If these missing data were
available, survival probabilities could be estimated by the
methods of isotonic regression. Without such data, Wald
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set to work on the problem of estimating the probability
that an aircraft that has sustained a fixed number of hits
will survive an additional hit. He also attempted to es-
timate the survival probability of an aircraft sustaining a
hit to one of various portions of the body, with different
failure rates (e.g., a hit to the nose is more lethal than a
hit to the middle of the fuselage). Wald’s problems were
compounded by a lack of modern computing equipment,
a present-day recourse when one is faced with hard prob-
lems that resist analytical solution.

2.2 A Hypothetical Set of Data

Throughout the memoranda, Wald used data to illus-
trate his methods. Although Wald used different data
values to illustrate the analysis, we have redone the cal-
culations for one set of data. This helps one see the use-
fulness of the more complicated analyses.

The set of data is divided into two subsets. The first
subset pertains only to hits on the aircraft, ignoring lo-
cation of the hit. Assume that 400 aircraft were sent on
a mission and that the numbers of aircraft returning with
i hits anywhere, A;, are Ap = 320, A; = 32, A, = 20, A;
=4, Ay = 2, and As = 2. The second subset assumes
that the location of the hits is known. Subdivide the air-
craft into 4 main parts: engines (part 1), fuselage (part 2),
fuel system (part 3), everything else (part 4), and let y(i)
be the fraction of the area of the aircraft occupied by part
i. The total number of hits to all returning aircraft in this
case is D.7—1 iA; = 102. Assume that the hits are distrib-
uted according to the following observations:

Part number () Number of hits (Ni) observed on part

1 .269 19
2 .346 39
3 .154 18
4 .231 26

In anticipation of what follows, let 8(i) be the fraction
of hits observed on part i. Then 8(1) = .186, 8(2) = .382,
3(3) = .176, 5(4) = .255.

These are the kinds of data that the operational com-
mander would obtain and pass on to the statistician work-
ing for him. We suggest that the reader now reread the
operational problems described in Section 2.1, consider
the data again, and then decide how one might attack the
problem.

2.3 An Outline of Wald’'s SRG Memoranda

The basic observational variables are the number N of
aircraft participating in the combat, the number A; of air-
craft returning with 7 hits, and a; = A;/N. From these
data, one wants to find P;, the probability that an aircraft
is downed by the ith hit, and p;, the conditional proba-
bility that an aircraft is downed by the ith hit, given that
it received at least i — 1 hits and was not downed.

Wald then introduced distributions of hits over the air-
craft and found analogous quantities for each subregion
of the aircraft. Figure 1 is a flowchart of Wald’s work on
this problem.
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Figure 1. Schematic Outline of Wald’s Memoranda.
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3. SURVEY OF WALD'S MEMORANDA

This section is a survey of the memoranda. Until Sec-
tion 3.6, it is assumed that sampling errors are negligible.

3.1 Wald’s Basic Equation

In this section, we derive the basic equation satisfied
by the probabilities P; (or g; = 1 — p;). Let a; = A;/N be
the fraction of aircraft returning with i hits. Wald assumed
that a; = 0 if i > n, for some n. Thus, the fraction of
aircraft lostis L = 1 — >,7_¢ a;. Wald also assumed that
an unhit aircraft always returns and that there is a value
m such that the probability of receiving more than m hits
is zero. He argued that m = n + 1.

Let x; be the fraction of aircraft downed by the ith hit.
(Thus xo = 0.) Then >,/ x; = L. The x;’s then satisfy
the recursion relationship

i—1
x,~=p,~<1 - Etlj—
Jj=0

The term in brackets in (3.1) is the proportion of aircraft

i—1

E.’g), i=1,..

Jj=0

3.1

.y R

receiving at least i hits. If ¢; is defined by ¢; = 1 —
>.i24 a;, then (3.1) becomes
i—1
Xi+pi D xi=pici, i=12,...,n (3.2

Jj=0

For some of the analysis, Wald found (3.2) more useful
than (3.1). The goal now is to somehow relate the ob-
servables (a;) to the probabilities. In SRG 85, Wald de-
rives the following equation, which is basic to all of his
work.

=1 — ao. (3.3)

n
a;

q1 - q;

Equation (3.3) relates the observables a;, the fractions of
aircraft returning with j hits, and the unknowns g;, the
conditional probability of not being downed by the jth hit
given that the first j — 1 hits did not down the aircraft.
It is the fundamental equation of the analysis. In the next
section, we compare Wald’s work with other approaches
to this problem. For this reason, it helps to review Wald’s
derivation of (3.3).

Let b; be the hypothetical proportion of aircraft hit i
times if dummy bullets were used. Then b; = a;; set y; =
b; — a;. In addition, y; = P;b; = Pi(a; + y;). Thus y; =
(Pi/Q:) a;, where as before, P; = 1 — q1q2 - g; and Q;
= ¢, *** q;. Hence we obtain y; = (a:/q, - q)) — a..
Summing up to n and noting that >,”_, y; = L gives
(3.3).

Equation (3.3) is easily solved with the simplifying as-
sumption of constant g; = q. For example, for the data,
(3.3) becomes the fifth-order equation

.08 N 05 .01  .005  .005

20,
9 ¢ ¢ 4 q’

which yields g = .851. Hence p;, the probability of the

(3.4)
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ith hit downing the aircraft given that the first i — 1 hits
did not down it, is p; = .149 (for all i).

Once we know p;, we can compute x;, the ratio of the
number of aircraft downed by the ith to the total number
of aircraft participating, recursively from Equations (3.1)
or (3.2). We find that x; = .02980, x, = .01344, x; =
.00399, x4 = .00190, and xs = .00087.

These results are easily obtained, but are based on the
assumption of g, = g, = ‘- = g,. This severely limits
their usefulness. The rest of Wald’s memoranda studies
ways of relaxing this assumption.

3.2 A Least Upper Bound for the Probability of i
Hits Downing an Aircraft

Wald’s next step was to find a bound on P; = 1 —
I1;=1 gi, which is the probability of an aircraft being
downed by i hits. The bound he found is sharp and its
attainment corresponds to the worst case in terms of sur-
vivability.

The problem of interest may be written as follows:

i
minimize [] g,
j=1

a;

subject to >, =1 - ao. (3.5)

j=1491 """ 4,

Equation (3.5) is a nonlinear optimization problem (Avriel
1976). Wald obtained an iterative solution as follows.
First he showed that if a set {g*, . . ., g.*} solves (3.5),
then ¢* = g;+1* = -~ = gq,*; that is, that the g; are all
equal forj = i.

Applying this result when i =
imized if it satisfies

4

jgl qr

Assume now that g, is known by solving the algebraic

equation (3.6). Next one needs to find the value of g that

minimizes ¢,q.. Using the result given above, problem
(3.5) becomes

I means that g, is min-

(3.6)

=1—a0.

minimize q;q»
. 1 & a
subject to — L
qi jgl q’!

=1 — a,. 3.7

Straightforward solution via the Lagrange multiplier
method gives

o=l S U-Da
1 —a ;5 g/
and
n—1 .
(J - l)aj+1
—_— = q,. (3.8)
jz:z q”’ :

Elementary arguments show that these equations have
exactly one root in (g, g2).
Wald then generalized this argument to determine the
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minimum of [}~ ¢;. He followed the same kind of rea-

soning, starting with the assumption that q; = ¢, i = j

= 2; then one wants to minimize g,q,'~'. The Lagrange
multiplier method is used again; only the details change.
It is clear that even with present-day computing abil-
ities this approach quickly becomes complicated and
time-consuming. In 1943, the task of exact computations
was hopeless for any problems of operational interest;
thus Wald considered various approximation schemes.

3.3 Approximate Bounds on P,

Wald’s next step was to obtain approximate upper and
lower bounds on P;. Let P;* be the maximum value of P;
and let 0;* = 1 — P;*. The first step is to find the lower
bound z; of Q;*, that is, to find a bound on the minimum
of Q;. Wald used an interesting kind of hypothetical rea-
soning: Let y; be the fraction of the returning aircraft that
would be downed if they were to receive i — j additional
hits. Then one obtains

P—Eyj-f-Exj, i=1

J=1

y 2, .. (3.9)

., n.

After some algebraic manipulations, Wald obtained the
bounds

2 x. (3.10)

Equation (3.10) provides a lower bound on Q;, once an
upper bound on X}_; x; is known. Wald showed that the
maximum value of X; = >./_, x; occurs when p, = p, =

- = p, = p. In such a case, the solution of (3.6) gives
q:1 = 1 — p, and then the x; are obtained from (3.1). We
will let z; be the lower bound on Q; obtained in this man-
ner.

Next Wald turned to the problem of estimating an upper
bound on the value of Q;. He showed that such an upper
bound is given by

t,‘ = min[l;li, ﬁzi_], .y ﬂi—129 ﬁi]9 (3-11)
where i, is the positive root of the equation
> = uJ - =1- 2 ao. (3.12)

J=r
He obtained (3.11) and (3.12) by a sequence of manipu-
lations on equations analogous to (3.5) and (3.6).

Let us now apply these results to the data. First we
will find the lower bound z;. The first step is to find go,
the solution of (3.3) when q; = g2 = - = q,. In this
case, we have found g, as the solution of (3.4); that is,
go = .851. We have also found the x; and thus obtain
the upper bounds X; = >,i_; x;. For the data, we obtain
X; = .02980, X, = .04324, X5 = .04723, X4 = .04913,
Xs = .05000. According to (3.10), our lower bound is z;
=1 — (X/(1 — Xiz} a;)). Hence we obtain z; = .85100,
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22 = .63967, zz = .32529, and z4 = .18117. It is not nec-
essary to calculate zs, since Qs can be obtained directly.
In this case, zs = .090909.

Now consider the upper bounds ;. Let us write out
some of the Equations (3.12), to see what they look like.
For r = 1, we obtain (3.4), so that &, = .851. Forr =
2, (3.12) becomes

—+——+—-+—;=1—ao—a|, (313)

which has solution &, = .722. In a similar way, one finds
i3 = .531, iy = .333. The ¢; are given by (3.11); namely

= .851
t, = min(i,?, i) = .722
t; = min(i,?, @,?, i;) = .521
ty = min(i,*, @y°, %, ds) = .282. 3.14)

Note that ¢s is not calculated since the exact value of Qs
can be found.

In Table 1, we compare the exact result obtained by
the method of the previous section with lower bound (z;),
upper bound (¢;), and the value obtained assuming all hits
are equally lethal (go’).

3.4 Bounds on P, Under Additional Assumptions

The results of the previous section are, from a com-
putational viewpoint, less cumbersome than the exact re-
sults. They are still complicated to use, however, so Wald
studied the bounds on survival probability under addi-
tional assumptions. These assumptions are that

MG =q+e1=N\gq;, j=12,...,n—1 (@3.15)
for fixed known \; and \,, and that
> g\ VT2 <1 — a. (3.16)
Jj=1

Note that (3.16) need not be true if A\, is too small; but
if A1 is close enough to 1, then (3.16) will be true. The
basic Equations (3.3) and (3.16) imply that g, < 1.
Wald first calculated the values of q;, . . . , g, Which
make Q; (i < n) a minimum. Denote these by g.*, . . .,
g.*. By using a straightforward proof by contradiction,
he proved the following: (a) forj = i,i + 1,...,n —
1, gj+1* = \2q;*; and (b) if j is the smallest integer such

Table 1. Exact and Approximate Values of Q;

Value
Exact Lower Upper Equal Lethality
i Value Bound Bound of Hits
1 .851 .851 .851 .851
2 721 .640 722 724
3 .517 .325 .521 .616
4 .282 .181 .282 525
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that gx+1* = N2q,* for all k = j, then q,* = \,q,_* for

r=2,3,...,j — 1. These results can be viewed as
analogs of the results in Section 3.3.
LetE,,r=1,...,i — 1, be the minimum value of

Q; under the restriction that g;.1 = Nig;,j =1, ...,
r—1,and gj+1 = Nagjforj=r +1,...,n — 1. The
above results show that Q; = min{E;;, E, . . ., Eii_1}.
The results in Sections 3.2 and 3.3 show how the E;, can
be calculated. In particular, Wald showed that if g, is the

positive root (in g) of the equation (forr = 0,1, 2, . . .,
i—1
r+1 n—r—1
2 aj)\l—j(j—l)/Zq—j + 2 {ar+1+j)\]—r(r+l)/2—rj}
Jj=1 Jj=1

X Ay THUFEDZ g=CHIEDY = | — g0 (3.17)
then an approximation to E;, is
E, = )\lr(r+1)/2+r(i—r—1) )\2(1'—’)(1'—’—1)/2 qri- (318)

Similar arguments show that if g,*, . . . , g,* are values
of g; minimizing 0, = []/~: g;, then g;+1* = \,g/*, j
=1, ..., n — 1. This means that if g is the root of the
equation
> a2 g7 = 1 — g, (3.19)
Jj=1
then the minimum value of Q,, is \,""~ V2 g”,

Wald proceeded in the same fashion to show that the
maximum of Q,, is N\,"" =12 g" where q is a solution of
the (3.19) with X\, replaced by \,.

There is a quantity analogous to E;,. Namely, if D,, is
the maximum of Q; under the restriction that g+, = \q;
forj=r+1,...,n— land gj4+, = N\yg,forj = 1,

.» r — 1, then Wald showed that the maximum of Q;
is max{D;i, ..., D;;_;}. He showed that a good ap-
proximation to D;, is obtained from (3.17) and (3.18) with
the \; and \, interchanged.

We apply these results to the data with A, = .85, \,
= .95. It is easy to check that (3.16) is satisfied.

To find the lower limit of Q;, the four equations (for r
=0, 1, 2, 3) (3.17) must be solved. For example, for r
= 0 this equation is
a; az as as

=+ + +
q )\2q2 x23q3 A26q4

as
The roots of (3.17) for the values r = 0, 1, 2, 3 are go =
887, g1 = .938, g, = .964, and g; = .979. Next, the E,,
are found approximately from (3.18), and then Q; is the
minimum of the E,. Table 2 shows the results of such
calculations. The lower limit of Qs is found by using
(3.19). In this case, the root of (3.19) is ¢ = .986 and the
lower limit of Qs = \,'%¢° is .183.

To find the maximum value of Q;, the same procedure
is followed. Since the details are the same, only the final
results will be given. Table 3 shows both bounds.

+ =1-ae. (3.20)
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Table 2. Estimating the Minimum of
the Survival Probability
Eir min Q

i r gr Approximately Approximately
1 0 .887 .887 .887
2 0 .887 747

1 .938 747 747
3 0 .887 .598

1 .938 567

2 .964 .550 550
4 0 .887 455

1 .938 .408

2 .964 .364

3 979 .347 .347

3.5 Analysis of Vulnerability Areas of the Aircraft

Wald considered next the problem of determining the
vulnerability of different parts of the aircraft. The idea
here is that the location of the hits on returning aircraft
provides useful information on the vulnerability of var-
ious parts of the aircraft. Wald began with the premise
that one knows the conditional probability v;(i;, . . . , i)
that area m will receive i, hits given a total of i =
>k 1 im hits. He argued that v;(iy, . . . , ix) can be ex-
perimentally determined by firing dummy bullets at real
aircraft. The quantity of interest here is Q; (i1, . . . , ix),
the probability that an aircraft is not downed given i, hits
to area m, with >.% _, i,, = i. Wald first formulated the
problem in a very general setting, where it is essentially
intractable.

To make any progress, he needed to introduce an as-
sumption of independence. Thus, he assumed that if g(i)
is the probability that one hit on area i will not down the
aircraft and if y(i) is the conditional probability that area
i is hit given that one hit occurred, then

k
Qiiv, ..., i) = [I [q(m))™, (3.21)
m=1

i!

k

% II tvomi~. (3.22)
IT it ™!

m=1

In (3.21) and (3.22), it is understood that D % _, i,, = i.
Let 3(i) be the probability that area i is hit, given that the
aircraft received exactly one hit that did not down it. Then

‘yi(ila c e ey lk) =

Table 3. Lower and Upper Bounds on Q;

i Lower Bound on Q, Upper Bound on Q,
1 .887 .986
2 747 .826
3 .550 .631
4 .347 463
5 .183 .329
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by its definition
v(t)q(z) _
2 ¥()q(i)

i=1

8(@) = (3.23)

In (3.23), recognize the summation as the probability g
that a single shot did not down the aircraft. Under the
assumption of independence, g will satisfy (3.3) with g;
= g and may be replaced by the solution to that equation.
Equation (3.23) is rewritten as

3(g
y@)
where y(i) is assumed to be known from auxiliary tests

or equated with the proportion of surface area associated
with part i, and (i) may be estimated from the data as

E ZJ,a(Jl, .
2 2 (U +

q() = (3.24)

L) jk)
(i) =

c+jaCin, g (3-25)
The interpretation of 8(i) is that it is the ratio of the total
number of hits in area i of the returning aircraft to the
total number of hits on the returning aircraft. Thus, 3(;)
is empirically determined and g(i) is computed by apply-
ing (3.23) to the data. Such analyses have actually been
performed on real data, with success.

We apply this approach to the data. We have already
seen that the positive root of (3.3) with equal g; is go =
.851. Thus qo is the overall probability of surviving a hit.
The probability of surviving a hit to part i is given by
(3.24). The g in (3.4) is qo; (i) (the fraction of area oc-
cupied by part i) and 3(i) (the fraction of hits to part i)
were given along with the data. The results of the cal-
culations are shown in Table 4. For these data, the most
vulnerable portion of the aircraft is the engine area.

3.6 Effects of Sampling Errors

Wald considered sampling errors in the special case of
equal (but unknown) g;, and he derived confidence limits
for q.

In the absence of sampling errors, the x; are recursively
defined by (3.1) with equal p;. When there are sampling
errors, (3.1) is replaced by

i—1 i—1
X = ﬁi(l ->Xa- 2 x,-) ) (3.26)
Jj=0 Jj=1
Table 4. Probability of Surviving a
Single Hit to a Given Part
Probability of Surviving
Part a Single Hit
Entire Aircraft .851
Engine .588
Fuselage .940
Fuel System .973
Others .939

Joumal of the American Statistical Association, June 1984

where p; has the dlstrlbutlon of the success ratio in a
sequence of N; = N(1 — D izda; — > i=1 x;) independent
trials. Still assuming that x; = 0 for i > n (which is not
really true for the case with sampling errors), the basic
equation (3.3) becomes

Here g; = 1 — p; is an estimate for g; but the g;’s are
unknown.

Wald derived confidence bounds in the following man-
ner. Consider a hypothetical experiment in which b; is

(3.27)

=1 - aop.
QJ

_the fraction of aircraft that would be hit exactly i times

if dummy bullets were used. The distribution of Na; is
the same as the distribution of the number of successes
in a sequence of Nb; independent trials, each trial having
a probability of success g'. This gives

N i bl(l - ql)
E(a;/q') = b;, var(ai/q’) = ——-———Nqi . (3.28)
Summing (3.28) gives
E(E a,~/q‘> = > b =1 - a,,
i=1 i=1
& di o b1 - ¢Y)
var — | = i (329)
(igl ql> i=1 Nq

For moderate to large N, appeal to the central limit theo-
rem and conclude that if

I |
—12/2 —
j NV~ e dt = a,
then an a confidence interval for q is
" b1 — ) 12
1 - - )\u —_—
o (231 Ng'

n _ i 172
<1 —%+M<§9%%#% . (3.30)

coa;
=29
The only trouble with (3.30) is that the b; are not known.
Again appealing to limit theorems, Wald replaced b; by

a;/q’ (this replacement is accurate to O(1/\/n)). Hence
we obtain a confidence interval of the form

n a,~(l _ qi)>1/2

b= o= M (g’l Ng*
n a; n a,~(1 _ q,) 12
2 e 1 - a0+ Na| > N ) - (3.31)

i=1

A final simplification is achieved by another appeal to
a limit theorem. If go is the root of (3.3) with equal g;,
then as N — ©, g — qo, so Wald replaced g% by go* in
(3.31), and the resulting confidence limit is now very sim-
ple.

These results can be summarized in the following el-
egant fashion. If a; are subject to sampling error and q is
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the true parameter, then >,/ a/q’ is normally distrib-
uted with mean 1 — g, and variance given by (3.29).
To show how this works, we will derive the 95% and
99% confidence intervals for the data. The first step is to
find the positive solution, go, of (3.3) with equal g;. In
this case, go = .851. The second step is to find the ap-
proximate variance of D.7_; a;/q’. This variance is

n

2 ai(l — QOi)/N‘IOZi,

i=1

o =

(3.32)

and in this case we find ¢ = .01373. According to (3.31),
the confidence limits are found by solving

n
>
i=1

where A\, = 1.960, 2.576 for the 95% and 99% limits,
respectively. For the 95% confidence limit on go, the so-
lution of (3.33) gives [.797, .921] and for the 99% confi-
dence limit, [.782, .947].

|8

(3.33)

i
,.=1—aoi)\,,cr,

Q

3.7 Miscellany

SRG Memoranda 109 and 126 deal, very briefly, with
these topics: (a) factors that are nonconstant in combat,
(b) nonprobabilistic interpretation of the results, (c) the
situation when (i) are unknown, and (d) vulnerability to
different kinds of guns. The most interesting of these top-
ics is the last one, in which Wald generalizes the previous
work to include different kinds of weapons. Namely, in-
stead of working with g(i), the probability that an aircraft
survives a hit to part i, he works with g(i, j), the prob-
ability that an aircraft survives a hit to part i by weapon
type j. The generalization is conceptually straightfor-
ward, although the details are complicated.

4. DISCUSSION

In this section, we propose to reexamine Wald’s work
on aircraft survivability, relating his results to classical
statistical theory as well as to more recent statistical
thought. We believe that such a development makes
Wald’s recommendations more easily understood. It also
allows us to support the general conclusion that Wald’s
treatment of this problem was definitive, since, through
this reexamination, we are able to identify the optimal
character of Wald’s estimators and to explain why treat-
ment of more general problems is impossible with the data
Wald had available to him.

Let us consider the first data set. Wald does not ex-
plicitly discuss a model for the data he seeks to fit. It is
clear, however, that the appropriate model is multinom-
ial. It is also clear that there are missing data. It is useful
to picture the data as embedded in the following scheme.

XOl Xll XZI X3l X4l XSI
X12 X22 X42 XSZ (41)

where X;; = the number of aircraft returning with i hits,
and X, = the number of aircraft downed with i hits. Data

X3
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Set 1 amounts to X;;, i = 0, ..., 5, while X, i = 1,
..., 5 are unobservable. The multinomial distribution
based on 400 observations classified into 11 cells repre-
sents the full model for the collection {X;;}. Let the pa-
rameters of the full model be denoted by {p;;}. Wald pre-
fers to use the parameterization:

(1) poi, ..., ps1 (for which ao, . . ., as are the cor-
responding sample proportions in
Wald’s notation)
(2) Qla e e ey QS’ Where
Pi1
= . 4.2)
Q pit + pi2 (

Whatever the parameterization, the critical fact vis-a-vis
the estimation problem of interest is that the full model
is determined by 10 parameters while the available data
have only six degrees of freedom. Put another way, the
10-parameter model for the available data is not identi-
fiable; indeed, the likelihood depends on {p;2, . . . , ps2}
only through the value of >,7_, p;». The nonidentifiability
of the model for X;;, i = 0, ..., 5 explains the role of
the assumption

0, =4 foralli. 4.3)
This restriction renders the estimation problem well de-
fined. The necessity of identifiability also dictates the as-

sumption (for the purpose of analyzing the data set) that
the probability of sustaining more than five hits is zero.

We now turn to the derivation of the maximum like-
lihood estimators for the parameters of the multinomial
distribution with missing data under the restriction (4.3).
Initially, we write the likelihood as

5 5 400 — Z3_ o xi1
«2 < <H p“x.'|><] - 2 p“> .
i=0 i=0

The likelihood equations

are equivalent to

_ X
le—N

Now, the parametric analog of Wald’s fundamental equa-
tion (3.3) is

E%L=1*P01-

=t H qi

i=1

4.4)

The latter equation can be shown to be algebraically
equivalent to

> (pir + p2) = 1 = por, 4.5)

J=1

which simply specifies that all cell probabilities sum to
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one. Under restriction (4.3), Equation (4.4) becomes

n

> 2

=

=1 — po1, (4.6)
specifying ¢ implicitly as a function of {p;;, i = 0, . . .,
n}. Now, let ¢ be the solution of (3.3), which, for the first
data set, can be written as

5
>
Jj=1

From the invariance property of the MLE’s, it is clear
that § is the MLE 'of the parameter q.

The regularity of the multinomial model implies the
asymptotic optimality of Wald’s estimators of the param-
eters {p;1} and p. Wald’s confidence interval for the sur-
vival probability g can be obtained via MLE theory and
thus, its optimality in large samples can be asserted. Since
interesting larger models cannot be treated with the data
available, Wald’s estimation results are, with a suffi-
ciently large sample size, the best possible. For larger
models, Wald appropriately turns to the development of
bounds on survival probabilities.

Two important areas of statistical analysis having some
bearing on Wald’s work have been developed since
Wald’s time. The first is the area of isotonic regression,
a subject treated in depth in the recent book by Barlow
et al. (1972). The second is the treatment of problems
with missing data via the EM algorithm (see Dempster,
Laird, and Rubin 1977). Isotonic regression would appear
to be an appropriate methodology in Wald’s problem,
since aircraft vulnerability undoubtedly increases with
the number of hits sustained; that is, it is reasonable to
expect that p; = p, = -+ = p,. In spite of its intuitive
appeal, the isotonic version of Wald’s problem suffers
from nonidentifiability, since ordering of parameters does
not reduce the dimension of the parameter space. Thus,
given Wald’s data, estimation via the methods of isotonic
regression proves impossible without additional assump-
tions. If complete data were available, the unrestricted
MLE’s for the g/’s are given by

i
] Xil ,
qu.:————-———— l'—_l,..
j=1 xi1+xi2

I\>

= =1 — por. @.7)

g

~

., S, 4.8)
The problem of ‘‘isotonizing’’ these estimates is formally
equivalent to the problem of estimating ordered binomial
parameters treated by Barlow et al. (1972, p. 102).

The EM algorithm does not help for similar reasons.
When the model is not identifiable, a starting value p©®
for the parameter produces expected X values, which in
turn produce p” = p©. In the reduced model, subject
to (4.3), one can treat maximum likelihood estimation
analytically, and there is no need to employ the EM al-
gorithm.

Let us now examine Wald’s estimators for the survival
probabilities of various aircraft sections. The portion of
the data set classifying hits by part can be viewed as
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embedded in the array

Yiu Yoy Y Ya N

Y12 Y22 Y32 Y42 N2 (49)
where Y;; = # of hits to part i on returning aircraft; Y,
= # of hits to part i on downed aircraft; N, = >,¢-, Yi;
N, = >#_, Ys. The data consist of Y;,i =1, ...,4

and N, while Y»,i = 1,. . .,4and N, are unobservable.
Define the following events:

A; = {the ith section is hit}
A = {the aircraft is hit}
B = {the aircraft is not downed}.
Wald’s parameters may be identified as
q = P(B| A), q(i) = P(B| A)
3() = P(A;| A N B),y(i) = P(A; | A). (4.10)

With complete data as pictured in (4.9), the MLE’s of
q(i) are simply

Y;

g@) = Y.+ 1, i=1,...,4. “.11)
With the incomplete data available to Wald, one must
make use of the structural relationship (3.23) (which is
immediate from the definitions in (4.10)) and the as-
sumption that y(i), i = 1, ..., 4 are known. Wald ex-
plicitly remarks on the impossibility of estimating y(i) and
q(i) simultaneously from his data. However, MLE’s for
{8())} and g may be obtained from the data, and the es-

timates

O
y(@)
are maximum likelihood estimates by invariance, pro-
vided these estimates lie in the unit interval. Wald does
not deal with estimation problems in which one or more
of the estimates ¢ (i) exceed one. In such cases, the MLE
of the vector (q(1), . . ., g(4)) lies on the boundary of the
parameter space, and its identification is tedious but

straightforward.

In our discussion of Wald’s formulation and solution
of a variety of problems dealing with aircraft survivabil-
ity, we have mentioned a number of assumptions he im-
posed to obtain closed-form solutions or efficient bounds.
These assumptions deserve scrutiny. Among the as-
sumptions one encounters are (a) constant vulnerability,
that is, g; = g, which is an independence assumption; (b)
known bounds on rate of growth of vulnerability, that is,
Mg = gj+1 = \2gq;; and (c) independence of survival
among and within areas of different vulnerability. The
main cause for concern regarding these assumptions is
that the data available do not provide a means for inves-
tigating their validity. Consider assumption (a), for ex-
ample. With complete data (corresponding to {x;;} in (4.1))

4@ i=1,...,4 4.12)
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one could investigate statistically, via a likelihood ratio
test or otherwise, the validity of the assumption g; = q.
With the type of data available to Wald, such an option
is not open because of the lack of identifiability of larger
models. Wald cautioned his readers that the solution he
provides should be used only “‘if it is known a priori that
g1 = ¢ = -+ = ¢q,.”” How and whether such a priori
knowledge could be garnered is open to debate. Wald
does provide an option for those who are more conser-
vative. The lower bounds for Q; may be considered con-
servative estimates of survival probabilities, although
they might often be too small to be useful. The dilemma
one encounters with the foregoing three assumptions
mentioned is similar to that faced in competing risks
methodology, where considerable recent work has fo-
cused on identifiability and bounds for survival proba-
bilities (see Tsiatis 1975 and Peterson 1976).

Viewing Wald’s work on aircraft survivability in light
of the state of the art at the time it was done, it seems to
us to be a remarkable piece of work. While the field of
statistics has grown considerably since the early 1940’s,
Wald’s work on this problem is difficult to improve upon.
Much of the work appears to be ad hoc—there are few
allusions to modeling and no reference to classical sta-
tistical approaches or results. By the sheer power of his
intuition, Wald was led to subtle structural relationships
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(e.g., Equations (3.3) and (3.24)), and was able to deal
with both structural and inferential questions in a defin-
itive way.

[Received May 1981. Revised March 1983.]
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Comment

The authors are to be congratulated on a fine paper.
They have distilled the key ideas in Wald’s work on air-
craft survivability, and have successfully related the ideas
to standard statistical methods. The bulk of this discus-
sion will be concerned with this relationship of the work
to standard statistical methods, particularly the use of
statistical models to describe the situation. Some atten-
tion will also be given to decision-theoretic issues.

1. STATISTICAL MODELING

As indicated in the paper, the primary quantities stud-
ied can be considered

P;; = P (i hits and survival)

= Qi')\i,

where

P (survival | i hits),

P (i hits),

Q:

z
I

and
Po* = P (not surviving) = 1 — >, Pi.
i=0

If the observations can be assumed to be independent,
and out of a total of » missions the data are

X1 = the number of aircraft that receive i hits
and survive,
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