Next Atypical Types 1

Atypical Types
v 1.0

Mark Jason Dominus
23 October 2008

Slides online at:

http://pic.blog.plov

Next K7 Copyright © 1999,2008 Mark Domin

Next Atypical Types 2

F

GOOJAFTERNOON.
| am Mark Dominus.
Thank you for inviting me toASHVI LLE.

It is a real honor to be speaking her@a@sLA.

Next K7 Copyright © 1999,2008 Mark Domin

Next Atypical Types 3

Shameful confession

Next BR7 Copyright © 1999,2008 Mark Domin

Next Atypical Types 4
In the programming community, we see a lot of holy wars.

Some of these are merely matters of personal preference.

They go on forever.

For example, should one useoremacs?

It can be easy to forget that other arguments are eventually resolved.

Next K7 Copyright © 1999,2008 Mark Domin

Next Atypical Types

For example, structured programminggot o?

This one is finished now.

The bodies of thgot o supporters are buried pretty deep.

Next %Q 7 Copyright © 1999,2008 Mark Domin

Next Atypical Types 6

Before that, there was a holy war about high-le
languages vs. assembly language.

| caught the tail end of it when | began
programming in the 1970’s.

"High-level languages are inefficient," said the
assembly language proponents.

And they were right.

They lost anyway.

Next PRy Copyright © 1999,2008 Mark Domin

Next Atypical Types 7

Manual ¢
memory e
allocation vs.#
automatic '
garbage
collection.

| didn't
expect to see
this resolved
as soon as it
was.

But the
advent of
Java ended
that
discussison.

Right or
wrong,

garbage
collection hag
won.

Next K7 Copyright © 1999,2008 Mark Domin

Next Atypical Types 8

One of these discussions that is still going o
concerns strong vs. weak type systems.

C and Pascal programmers used to argue a |
about this in the 1980’s. !

Which is kind of funny, since C and Pascal h:
almost exactly the same type system. '

Next K7 Copyright © 1999,2008 Mark Domin

Next Atypical Types

In 1999 ago | gave a talk on this topic.
1999 title: "Strong Typing Doesn’t Have to Suc
(It was an audience of Perl programmers.)

For Perl programmers, any kind of automatic
check is a hard sell.

Perl’'s motto is "Enough rope".

9 [Mark Domin
Next XY/ Copyright © 1999,2008

Next Atypical Types 10

| said the question was still open.
In 1999, there was no well-known static type system that did not suck.
(I discussed SML, an academic research language.)

At the time, Java’s type system was a craptastic throwback to the 1970’s.

In 2008, | think Java 5.0 is a persuasive argument in favor of static typing.

Let’s look at the history a bit.

Next PRy Copyright © 1999,2008 Mark Domin

Next Atypical Types 11

Why Types?

Sherman, set the WABAC machine for 1955!

Next K7 Copyright © 1999,2008 Mark Domin

Next

Qeliﬂl’“
ge - ﬁiﬂe

Atypical Types

1955

12

JANUARY

oM TUWTH F 3A

MARCH

w1213 14
17 1% 15 a0
24 25 18 27 18

Bl =
Egawd
i
g
aneT

B
CEERE

Lo
-Z‘“E:n-n

16 A7 I8 17 30

SUMTUWTH F SA
f T 1

] 4 5 4.7 R 9
11T B3 b4 15 18
17 15 1920 31 13 33
i:?l!n!?ﬂ! -39

AUGUST

BhE=-Tm

CCTOBER
UM TUWTH F 54
214353470

? 1112131418
14 17 IR 1930 31 21

NOVEMBER ©

S M TLV W TH F 5S4

BIRCH- BROS. LTD, ROYAL MAIL YARD, CATHCART ST, LONDON, MW.S
PHOME: CULLIVER 4433 — TELEGRAMS. COACHING, NORWEST, LOMDOMN

Next

Copyright © 1999,2008 Mark Domin

Next Atypical Types 13

® | think this idea first appeared in COBOL

® |t's a pretty good idea anyway

Next %Q 7 Copyright © 1999,2008 Mark Domin

Next Atypical Types 14

Early Type Systems. FORTRAN

(This is Fortran 77, but early Fortran was similar.)

® | NTEGER
O | NTEGER* 2, | NTEGER* 4, | NTEGER* 8
® LOd CAL (Fortran jargon for ‘boolean’)
O LOGE CAL*1 (SynonymBYTE), LOG CAL*2, LOG CAL*4, LOG CAL*8
® REAL
O REAL*4, REAL* 8 (Synonym:DOUBLE PRECI SI ON), REAL* 16
® COWPLEX
O COVWPLEX* 8, COVPLEX* 16 (Synonym:DOUBLE COVPLEX), COVPLEX* 32
Now if you write:

| NTEGER |
REAL R, S

R=1+S

then the compiler can automatically generate the correct instructions

® Static type checking

Next \LQ /. Copyright © 1999,2008 Mark Domin

Next Atypical Types 15

Early Type Systems. FORTRAN

® Side note: Declaration is optional, defaults to:

O | NTEGER for variables that begin with J, K, L, M N

O REAL for other variables

® Array types also:

| NTEGER A(10)

® Functions have types:

FUNCTI ON F(X)
| NTEGER F, X
F = X+l
RETURN

N = F(37)

® Static type checking

® Expressions have types, determineda@mpile time

Next BR7 Copyright © 1999,2008 Mark Domin

Next Atypical Types 16

Early Type Systems: Lisp
® Dynamic type checking
® Values, not expressions, are tagged with types

® QOperations generate type errorsuat time

(+ 12
(+1 2.0)
3.0

(+ 1 "eels")
Error in +: "eels" is not a nunber.

<

Next I.-j_x,..Q 7 Copyright © 1999,2008 Mark Domin

Next Atypical Types 17

Static Typing in ALGOL -based languages
® ALGOL (1960), Pascal (1968), C (1971)
® These are all very similar
® Attempt to extend type system beyond scalars
® array of type
® poi nter to type (‘reference’ in ALGOL)
® set of type (Pascal only)
® record of types(struct in C)
® function returning type

® And arbitrary compositions of these operations:

/[* This is why we love C */
int *((*rmurgatroyd[17])(void *));

Next B Copyright © 1999,2008 Mark Domin

Next Atypical Types 18

Typing: Hard to Get Right
® Goal: Compile-time checking of program soundness
® Pitfalls
O False negative: Ignore real errors
O False positive: Report spurious errors

Pascal Examples

var s : array [1..10] of character;
s := "hello; { You wish }
{----Thank you sir and nmay | have another! ---------- }

type string = array [1..40] of character;
procedure error (c: string)
begi n
wite(' ERROR ’);
wite(c);
witeln(');
end;

error("File not found’); { In your dreans }
error(’File not found "); { You have to d
error(’ Please just kill me M. Wrth "),

Wirth agrees that this was a bad move.

And almost every commercial implementation of Pascal fixed this problem.

Not all these fixes were mututally compatible.

Next BR7 Copyright © 1999,2008 Mark Domin

Next Atypical Types 19

Typing: Hard to Get Right

Pascal is pretty much dead, so let’s have a...

C Example
#i ncl ude <stdio. h>

i nt mai n(voi d)

{

unsi gned char *c;
float f = 10;
for (c = (char *)&f;
Cc < sizeof(float) + (char *)&f
c++) {
printf("% ", *c);

}
putchar(’\n’);

return O;

}

float.c: In function ‘main’:
float.c:9: warning: conparison of distinct pointer types |acks a

® The warning is spurious

Next BT Copyright © 1999,2008 Mark Domin

Next Atypical Types 20

C Example
® The whole program was one giant type violation

O But the compiler didn’t care

Next BT Copyright © 1999,2008 Mark Domin

Next Atypical Types

Typing in Pascal and C isa Failure

Many spurious errors
® So programmers ignore them
Proliferation of type-defeating features:

® Casts (C)char *)(&f)
® Automatic conversions (C)

int i;
i = 1.42857; /[* Silently truncated to 1 */

® Variadic functions (C)

® Union types (C and Pascal both)

var u: case tag: integer of
0: (intval: integer);
1. (realval: real);
2: (stringval: array [1..20] of character);
3: (bool val: bool ean);
end;
r : real;

u.intval = 1428457;
r = u.realval; { Gack }

® Abuse of the separate compilation facility (Pascal)

This proliferation is a sure sign of failure

21

Next K7 Copyright © 1999,2008 Mark Domin

Next Atypical Types 22

Coping With Failure
® Static typing, as implemented in C and Pascal, was not very technically succe
® Solution 1: Give up
O Lisp
O APL
O AWK
O Perl (really give up:+(8/2).".".0.0.0)
Hey, that worked pretty well!
® Solution 2: Try to do better
O Haskell (and its precursors ISWIM, Miranda, ML, etc.)
O Closely related: Java 5

This hasalso worked pretty well.

Next K7 Copyright © 1999,2008 Mark Domin

Next Atypical Types 23

1999 vs. Today

® In 1999, the Haskell type system was a hard sell

® Haskell was worked on by a bunch of funny-looking ivory-tower types:

{

[]
]
1
1
1
1
1

R,

Philip Wadler Martin Odersky
(University of Edinburgh) (EPFL)

Next K7 Copyright © 1999,2008 Mark Domin

Next Atypical Types 24

1999 vs. Today

]
1
1
1
L
1
d

Martin Odersky

® But these guys designed the Java 5 "generics" feature

® Which is directly derived from their experience with Haskell and related langu

O Which they also designed

® The rest of this talk is about Haskell

Next K7 Copyright © 1999,2008 Mark Domin

Next Atypical Types 25

Static Typing that Works
We saw that typing in Pascal and C failed for several reasons:
® Too fine-graineddhar acter[12] vsS.character[13])
® Spurious warnings ⇒ ignored warnings
® Too easy to violate (unions, casts)
® Too coarse-grainedfr uct s)
® Inconvenient to use (explicit types everywhere)

These problems are surmountable!

Next B 7 Copyright © 1999,2008 Mark Domin

Next Atypical Types 26

TheHaskell Programming L anguage
® Extremely expressive and fine-grained type system
® Many fascinating and powerful features that | will not discuss today
® Originally a research language

® Solves the type problems of C and Pascal

Next K7 Copyright © 1999,2008 Mark Domin

Next Atypical Types 27

Typesin Haskell

Scalars
17 | nt eger
17. 3 Fl oat
"X’ Char
Tr ue Bool
Next K7 Copyright © 1999,2008 Mark Domin

Next

Typesin Haskell
Tuples

(17, ' x*)

(12.5, 13.5, 9)
(True, False, True)

Next L}_.Q Z

Atypical Types

28

(I nteger, Char)
(Float, Float, Int)
(Bool, Bool, Bool)

Copyright © 1999,2008 Mark Domin

Next Atypical Types 29

Typesin Haskell

Lists
[True, Fal se, True] [Bool]
[True, Fal se, True, Fal se] [Bool]
[1, 2, 3,4, 5] [1 nteger]
[0, 'C, '"P, 'S, 'L, "A] [Char]
" OOPSLA" [Char]

® String is accepted as a synonym fahar |

® Types like[I nt eger] this should remind you of Java types likest <I nt eger >
etc.

® Just as Java hasst <Li st <I nt eger >>, Haskell hag[I nt eger]]
[[1,2,3], [4,6], [0,233]] [
["I", "like", "pie"] [[Char]]
[17, "fo0"] Er

Next BR7 Copyright © 1999,2008 Mark Domin

Next Atypical Types 30

Typesin Haskell

Polymor phism
[] [a]
[[1.2,3], [1, []1] [[Integer]]
[['p, 717, 7e][], [1 1] [[Char]]
(1, 1) ([a], [b])

(Better examples coming up shortly.)

Next PRy Copyright © 1999,2008 Mark Domin

Next Atypical Types 31

Typesin Haskell

Type composition

[(True, [1, 2, 3]),
(False, [1]),
(Fal se, [4, 5])
] [(Bool, [Integer])]
Next K7 Copyright © 1999,2008 Mark Domin

Next Atypical Types 32

Typesin Haskell

Function types

not Bool -> Bool

wor ds String -> [String]
unwor ds [String] -> String
| ength [a] -> Int
reverse [a] -> [a]

head [a] -> a

tail [a] -> [a]

a->[a] ->[4]
® : is the "cons" operation

O [1, 2, 3] is shorthand fot: 2: 3: []

Next $7 Copyright © 1999,2008 Mark Domin

Next Atypical Types 33

Overloading

® Type classes are something like object classes in Java
® Several different types might be instances of the same class

O This means they must support some basic set of operations
® For example, any type might be an instance of tisaow class

O If so, there must be a functiehow of typet ->Stri ng
O The Haskell standard library makes all the standard types instargresiof

O So for example:

show 137 yi el ds " 137"
show True yi el ds "True"
show " Foo" yi el ds "\"Foo\""

® |f you define your own type, you can definermw method

O And you can declare your type to be an instan@hofv

® Notation:
Show | nt eger ("Integer is an instance of Show')
Show Bool ("Bool is an instance of Show')
Show [Char] ("[Char] is an instance of Show")
Next B Copyright © 1999,2008 Mark Domin

Next Atypical Types 34

Overloading

® Theshow function itself has this type:
(Show a) => a -> String
® That is, it takes an argument of typand returns &t ri ng
O But only ifa is an instance @how

O The(show a) is called acontext
® Theshow function forBool has typeBool -> String

</

Next \,,Q 7 Copyright © 1999,2008 Mark Domin

Next Atypical Types 35

Overloading

® Numeric operations are similarly overloaded

® The type of+ is

(Numa) => a->a->a
® S0 you can add twint eger arguments and get anotheit eger
® Add twoFl oat arguments and get anotiat

® Define your ownvect or type

O Declare that it's an instance dm

O Define+ (and*, etc.) operations on it

O And then add tw&/ect or arguments and get anothexct or

O But if you mess up and addvact or to ani nt eger you'll get a compile-time
error

Next K7 Copyright © 1999,2008 Mark Domin

Next Atypical Types 36

Overloaded constants

® Constants like 163 are taken to be shorthand for
from nteger 163

® \Wheref r om nt eger has type
(Numa) => Integer -> a

® S0 you can uselb3" as a constant of any numeric type

O As long as that type defines an appropriater nt eger function

Next \’\,.Q /. Copyright © 1999,2008 Mark Domin

Next Atypical Types 37

Overloaded constants

® In particular, this works:
163 + 13.5

® 163 gets the same type as 13.5 here

O An appropriate value is manufactured by an appropriate version of
from nt eger

® No nonsense like this:

doubl e fahrenheit = 98. 6;

doubl e celsiusl = 5/9 * (fahrenheit - 32);
doubl e cel sius2 = (fahrenheit - 32) * 5/9;
printf("% 1f\n% 1f\n", cel siusl, celsius2);
/[* This is why we love C */

0.0
37.0

® A constant like163 actually has this type:
(Numa) => a

® "Any typea, as long as it's an instancenfm"

9.

Next X4 Copyright © 1999,2008 Mark Domin

Next Atypical Types 38

Overloading
® Early versions of this type system had problems with equality
® \What's the type of=?
® Something likea -> a -> Bool
O Except thata must not be a function type
® Haskell solves this problem:
O (Eq a) => a -> a -> Bool
O And function types are not instancesqf
® Similarly, ordered types should be declared instancesdf

O Values can be compared with <, >, etc.

Next K7 Copyright © 1999,2008 Mark Domin

Next Atypical Types 39

Big Deal?
One big deal is that you dwt need to declare types!

Let’'s consider everyone’s favorite example:

int fact(int n) {
if (n ==20) return 1;
else return n * fact(n-1);

}

In Haskell, that looks almost the same:

1
n * fact(n-1)

fact O
fact n

Hey, where did thént s go?

Next K7 Copyright © 1999,2008 Mark Domin

Next Atypical Types

Typeinference

The compiler says to itself:

fact 0 = 1
fact n = n * fact(n-1)

"0 has typg Num a) => a."

Next

40

Copyright © 1999,2008 Mark Domin

Next Atypical Types

Typeinference

fact:: (Numa) =>a->b

"0 has typg Num a) => a."

fact O
fact n

1
n * fact(n-1)

"Son must have that type too."

Next BR7

41

Copyright © 1999,2008 Mark Domin

Next Atypical Types

Typeinference

fact:: (Numa) =>a->b
n: (Numa)=>a

"0 has typg Num a) => a."

"Son must have that type too."

1
n * fact(n-1)

fact O
fact n

"n- 1 checks out okay."

Next %Q /

42

Copyright © 1999,2008 Mark Domin

Next Atypical Types

Typeinference

fact:: (Numa) =>a->b
n: (Numa)=>a

"n has typg Num a) => a."

fact 0 = 1
fact n = n * fact(n-1)

"* requires two arguments of the same type, both instanc@s6f

"Sofact must returiNum a) => a also."

Next K7

Copyright © 1999,2008 Mark Domin

Next Atypical Types

Typeinference

fact:: (Numa) =>a->a
n: (Numa)=>a

"fact mustreturfNum a) => a also."

fact 0 = 1
fact n = n * fact(n-1)

"The return value of is consistent with that."

Next 1@ 7

Copyright © 1999,2008 Mark Domin

Next Atypical Types 45

Typeinference

fact:: (Numa) =>a->a
n: (Numa)=>a

fact 0 = 1
fact n = n * fact(n-1)

"Okay, everything checks out!"
® And if you ask it, it willtell you the type of act :
fact :: (Numa) =>a -> a
® |f you ask for the factorial of amt eger, you get back annt eger
® If you ask for the factorial of & oat , you get back &l oat

® If you ask for the factorial of & ri ng, you get a compile-time error

O Becaussst ri ng is not an instance olum

Next \{\,,Q /. Copyright © 1999,2008 Mark Domin

Next Atypical Types 46

Haskell types are always correct
fact :: (Numa) =>a -> a
® Ask the compiler to tell you the type of some function
® Is it what you expect?
O Yes? Okay then!
O If not, your program almost certainly has a bug.

B A real bug, not a nonsense string-the-wrong-length bug

Next U\,.W / Copyright © 1999,2008 Mark Domin

Next Atypical Types 47

Haskell types are always correct

® \When there’s a type error, you do not have to groan and pull out a bunch of c
O Or figure out to trick the compiler into accepting it anyway
O Instead, you stop and ask yourself "What did | screw up this time?"

O And when you figure it out, you say "Whew! Good thing | caught that."

Next “Z}Q / Copyright © 1999,2008 Mark Domin

Next Atypical Types 48

Type Inference Example 2

0
h + sunof t

sunof []
sunof (h:t)

Next $R7 Copyright © 1999,2008 Mark Domin

Next Atypical Types

Type Inference

sunof []
sunof (h:t)

0
h + sunof t

"The argument] ."
"That’s some kind of list, s&ya] ."

"And let's say that the return typetifor now."

Next %Q 7

49

Copyright © 1999,2008 Mark Domin

Next Atypical Types

Type Inference

sumof :: gl -> b

"The argument has type] ."

0
h + sunof t

sunof []
sunof (h:t)

"h: t is also a list, so that's okay."

"h must have type andt must have typga] ."

h:: a
t :: [a]

Next %Q 7

50

Copyright © 1999,2008 Mark Domin

Next Atypical Types 51

Type Inference

sumof :: gl -> b
h:: a
t: [a]

"h must have typa andt must have typga] ."

0
h + sunof t

sunof []
sunof (h:t)

"We're addingh to the return value afunof ."
"So the return value must healso."
"And + is only defined for instances mfim soa is such an instance

"So the return value is really of type (Nan=>a."

sunof :: (Numa) =>[a] -> a

Next PRy Copyright © 1999,2008 Mark Domin

Next Atypical Types 52

Type Inference

sumof :: (Numa) =>[a] -> a
h (Numa) =>a
t: (Numa) => [a]

"So the return value is really (Nuay =>a."

0
h + sunof t

sunof []
sunof (h:t)

"That fits with the other return value of 0."
"And everything else checks out okay."

® If you ask, it will say that the type is:
sunof :: (Numa) =>[a] -> a

® If we had puD. 0 instead of 0, it would have deduced:
sunof :: (Fractional a) =>[a] -> a

® (Fractional is a subclass oum
O Among other things, it supports division

® |f we had put Fred” we would have gotten a type error

O Becaussst ri ng is not an instance olum

Next K7 Copyright © 1999,2008 Mark Domin

Next Atypical Types

Type Inference Example 3

(h) : map(f, t)

Next K7

93

Copyright © 1999,2008 Mark Domin

Next Atypical Types 4

Type Inference

map(f, []) =[]
map(f, h:t) =f(h) : map(f, t)

"f has some type, say and[] has some list type, s@y] ."

Next BT Copyright © 1999,2008 Mark Domin

Next Atypical Types

Type Inference

map :: @, [a]) ->q
f p

"[1 has some list type, s@y] ."

map(f, []) =[]
map(f, h:t) = f(h) : map(f, t)

"h must have type andt must have typga] ."

Next 1@ 7

55

Copyright © 1999,2008 Mark Domin

Next Atypical Types 56

Type Inference

map :: @, [a]) ->q

fi p
h:: a
t: [a]

"h must have type."

t) = %(h) . map(f, t)

"f is used as a function appliedrtd

"Sof must have typea -> b for someb."

"f must take an argument of typend return a result of tyfe"

Next BR7 Copyright © 1999,2008 Mark Domin

Next Atypical Types 57

Type Inference

map :: @->b, [a]) ->q
f a->b

h: a

t: [a]

"f must take an argument of typend return a result of tyfe"

]
) = f(h) © map(f, t)
"The result off is consed to the result ofp."
"Sonmap must returrj b] ."

Next BT Copyright © 1999,2008 Mark Domin

Next Atypical Types 58

Type Inference

map :: @->b, [a]) -> [b]
f a->b

h: a

t: [a]

"map must return b] ."

map(f, []

[1) =
map(f, h:t

)

"That fits with the return value in the other clause."

[]
= f(h) : [map(f, t)

"Everything else checks out okay."
® |f you ask the compiler, it will say that the type is:

map :: (a ->b, [a]) -> [b]

Next i’;@ /. Copyright © 1999,2008 Mark Domin

Next Atypical Types

59

Type I nference Example 3 Continued

map :: (a->b, [a]) -> [Db]
Normally map is defined as aurried function

Instead of this:

map(f, [
map(f, h:

) = f(h) : map(f, t)
We write this:
map f [] =[]
map f (h:t) = f(h) map f t

And the type is:

mp :: (a->0Db) ->[a] ->[D0]
Then for example:

length :: [a] -> Integer

map length ["1", "like", "pie"]
[1, 4, 3]

length _all = map length

length_all :: [[a]] -> [Integer]

length_all ["I", "like", "pie"]
[1, 4, 3]

Next %Q 7

Copyright © 1999,2008 Mark Domin

Next Atypical Types 60

Life with Haskell

The Haskell type system has a lot of unspectacular successes.
Programming in Haskell is pleasant

® No type declarations—everything is automatic

® You get quite a few type errors (darn!)

® Butevery error indicates a reakerious problem

® Not likel i nt or C or Pascal.

Next B 7 Copyright © 1999,2008 Mark Domin

Next Atypical Types 61

A Spectacular Example

Here’s aspectacular example, due to Andrew R. Koenig.
We will write a merge sort function.
Strategy:

® Split list into two lists

® Sort each list separately

® Merge sorted lists together

We expect the type of this function to be

(Od a) =>[a] -> [4a]

Next \{\,.Q /. Copyright © 1999,2008 Mark Domin

Next Atypical Types 62

split []1 =([1, [I)

split [a] = ([a], [])

split (a:b:rest) = (a:a’, b:b")
where (a’', b’) = split rest

split :: [t] -> ([t], [t])

9.

Next ,><D / Copyright © 1999,2008 Mark Domin

Next Atypical Types 63

Merging

nmerge [] Is I's

merge I's [] I's

merge (a:as) (b:bs) =
if a <=b then a : nerge as (b:bs)
el se b : nmerge (a:as) bs

merge :: (Ord t) => [t] ->[t] -> [t]

9.

Next ,><D / Copyright © 1999,2008 Mark Domin

Next Atypical Types 64

Merge Sort

sort [] =[]
sort |s merge (sort p) (sort Q)
where (p, q) = split Is

® If we ask Haskell for the type ebrt, it says:

sort :: (Od a) =>1[t] ->[a]

Huh??

Next K7 Copyright © 1999,2008 Mark Domin

Next Atypical Types 65
Huh??

sort :: (Od a) =>1[t] ->[a]
® This says that we could putamy kind of list[t]

O It does not even have to be ordered
® And what we get out has nothing to do with what we put in

O We could put in a list afnt eger and get out a list &t ri ng

B Which is impossible

Next BR7 Copyright © 1999,2008 Mark Domin

Next Atypical Types 66
Huh??

sort :: (Od a) =>1[t] ->[a]
® But this isimpossible

One way the impossible can occur is if it never can occur

Next K7 Copyright © 1999,2008 Mark Domin

Next Atypical Types 67

“Go out with you? Sure, when
Arnold Schwarzenegger is elected
president.”

“But he isn’t an American
citizen.”

“Right!”

Next K7 Copyright © 1999,2008 Mark Domin

Next Atypical Types 68

Huh???
sort :: (Oda) =>[t] ->[a]

“Given a list of numbers, it could return a list of strings.”
“But it can’t possibly return a list of strings.”
“Right!”

Next L7 Copyright © 1999,2008 Mark Domin

Next Atypical Types 69

sort [] []
sort Is merge (sort p) (sort Q)
where (p, q) =split Is

In fact, this function has a bug.
® |t never returns
O (Except when the input is empty.)
O (In which case itloes return a list of typ¢a])
® Type checking found an infinite loop bug!

® At compile time!!

Next K7 Copyright © 1999,2008 Mark Domin

Next Atypical Types 70

Where sthe Bug?

sort [] =[]
sort |s merge (sort p) (sort Q)
where (p, q) = split Is

Suppose the function is trying to sort a one-elel
list [x]

It callssplit and getg[x], [])
Then it tries to recursively sort the two parts
Sorting[] is okay.

Sorting[x] puts it into an infinite loop

Next R4 Copyright © 1999,2008 Mark Domin

Next Atypical Types

Solution: Add a clause

sort [] = 1]

sort [x] = [X]

sort Is = nerge (sort p) (sort Q)
where (p, q) = split Is

The type is now:

sort (Ord a) =>[a] -> [4]

as we expected it should be.

DR

Next

71

Copyright © 1999,2008 Mark Domin

Next

Summary

Atypical Types

72

Next Atypical Types 73

Thank youl!

They say to allot 3–5 minutes per sligg

So | won't pretend that there will be time for
guestions

(sorry)

Please email me or catch me in the hallway

http://pic.blog.plo

mjd@plover.co

Next K7 Copyright © 1999,2008 Mark Domin

Next Atypical Types 74

Thank youl!

They say to allot 3–5 minutes per sligg

So | won't pretend that there will be time for
guestions

(sorry)

Please email me or catch me in the hallway

http://pic.blog.plo

mjd@plover.co

Next K7 Copyright © 1999,2008 Mark Domin

Next Atypical Types

Solution: Add a clause

sort [] = 1]

sort [x] = [X]

sort Is = nerge (sort p) (sort Q)
where (p, q) = split Is

The type is now:

sort (Ord a) =>[a] -> [4]

as we expected it should be.

DR

Next

75

Copyright © 1999,2008 Mark Domin

Next

Summary

Atypical Types

76

Next Atypical Types 77

Thank youl!

They say to allot 3–5 minutes per sligg

So | won't pretend that there will be time for
guestions

(sorry)

Please email me or catch me in the hallway

http://pic.blog.plo

mjd@plover.co

Next K7 Copyright © 1999,2008 Mark Domin

Next Atypical Typing 78

Thank youl!

They say to allot 3–5 minutes per sligg

So | won't pretend that there will be time for
guestions

(sorry)

Please email me or catch me in the hallway

http://pic.blog.plo

mjd@plover.co

Next K7 Copyright © 1999,2008 Mark Domin

