Next Atypical Types 1 Next Atypical Types 2

Atypi cal TypeS ' _ GOOJAFTERNOON.

| am Mark Dominus.
v10

Thank you for inviting me t0ASHVI LLE.

Mark Jason Dominus
23 October 2008

It is a real honor to be speaking her@asLA.

Slides online at:

http://pic.blog.plov

Next </>Q 7 Copyright © 1999,2008 Mark Domin Next </>Q 7 Copyright © 1999,2008 Mark Domin

Next Atypical Types 3 Next Atypical Types 4
A~ In the programming community, we see a lot of holy wars.
Shameful confession Prog g y y
Some of these are merely matters of personal preference.
. They go on forever.
Next A7 Copyright © 1999,2008 Mark Domin

For example, should one useorenmacs?

It can be easy to forget that other arguments are eventually resolved.

Next $R7 Copyright © 1999,2008 Mark Domin

Next Atypical Types 5 Next Atypical Types 6

Before that, there was a holy war about high-le\

For example, structured programminggot o?
languages vs. assembly language.

This one is finished now.
| caught the tail end of it when | began

The bodies of thgot o supporters are buried pretty deep. programming in the 1970’s.

"High-level languages are inefficient," said the
assembly language proponents.

And they were right.

They lost anyway.

Next </>Q 7 Copyright © 1999,2008 Mark Domin
Next %Q 7 Copyright © 1999,2008 Mark Domin

Next Atypical Types 7 Next Atypical Types 8

Manual “ One of these discussions that is still going o
memory o y ; ; S Ra concerns strong vs. weak type systems.
allocation vs.#
automatic C and Pascal programmers used to argue a |
garbage about this in the 1980's.
collection.

Which is kind of funny, since C and Pascal h:
| didn’t almost exactly the same type system.

expect to see
this resolved
as soon as it
was.

Next </>Q 7 Copyright © 1999,2008 Mark Domin

But the
advent of
Java ended
that
discussison.

Right or
wrong,

garbage
collection hag
won.

Next K7 Copyright © 1999,2008 Mark Domin

Next Atypical Types
In 1999 ago | gave a talk on this topic.

1999 title: "Strong Typing Doesn’t Have to Suc
(It was an audience of Perl programmers.)

For Perl programmers, any kind of automatic
check is a hard sell.

Perl’'s motto is "Enough rope".

Next

NR4YA

Copyright © 1999,2008 Mark Domin

Next Atypical Types 10 Next Atypical Types 11

| said the question was still open. Why Types,?

In 1999, there was no well-known static type system that did not suck. Sherman, set the WABAC machine for 1955!
(I discussed SML, an academic research language.)

At the time, Java’s type system was a craptastic throwback to the 1970’s.

Next K7 Copyright © 1999,2008 Mark Domin

In 2008, | think Java 5.0 is a persuasive argument in favor of static typing.
Let’s look at the history a bit.

Next K7 Copyright © 1999,2008 Mark Domin

Next Atypical Types 12 Next Atypical Types 13

® | think this idea first appeared in COBOL

® |t's a pretty good idea anyway

1955 |
w ,,‘?:,‘.‘:55;: 2 Next L7 Copyright © 1999,2008 Mark Domin

&7 83101k 12
13 14 15 46 17 1818
2021 27 22 14 25 28
7 28 9 36 31

BNsew g
e

i

SU M TEWTHF SA

5 3a. 8w g
120514 151617 18 | 1011 12 53 1415 18
192021 2223225 | 17 16 19 2021 33 13
16 27 18 19 30 ;: T3 26 17 28 19 30

)

OCTOBER NOVEMBER &«
SUMTUWTH F5a [SUMTUWTH F 54
st R o Rkt f Sl
13456701678 00112
ERCAIRERERIRER BERCITRISES) 1)
3

11 %

¥
1 2021 22 13 24 15 I
30 3

I3
78193031 31
1)51&2"1'1. MWW - -

BIRCH- BROS. LTD, ROYAL MAIL YARD, CATHCART
PHONE: GULLIVER TELEGRAMS. COACHING, NORW!

Next </>Q 7 Copyright © 1999,2008 Mark Domin

Next Atypical Types

Early Type Systems. FORTRAN

(This is Fortran 77, but early Fortran was similar.)

® | NTEGER
O | NTEGER* 2, | NTEGER* 4, | NTEGER* 8
® LOG CAL (Fortran jargon for ‘boolean’)
O LOG CAL*1 (SynonymBYTE), LOG CAL*2, LOG CAL*4, LOG CAL*8
® REAL
O REAL*4, REAL*8 (Synonym:DOUBLE PREC! SI ON), REAL* 16
® COWPLEX
O COVPLEX* 8, COVPLEX* 16 (Synonym:DOUBLE COMPLEX), COMPLEX* 32
Now if you write:

I NTEGER |
REAL R, S

R=1+S

then the compiler can automatically generate the correct instructions

® Static type checking

14 Next Atypical Types 15

Early Type Systems. FORTRAN

® Side note: Declaration is optional, defaults to:

O | NTEGER for variables that begin with, J, K, L, M N

O REAL for other variables

® Array types also:

| NTEGER A(10)

® Functions have types:

FUNCTI ON F(X)
I NTEGER F, X
F = X+1
RETURN
N = F(37)

® Static type checking

® Expressions have types, determineda@mpile time

Next K& 7 Copyright © 1999,2008 Mark Domin

Next R4 Copyright © 1999,2008 Mark Domin

Next Atypical Types 16 Next Atypical Types 17

Early Type Systems: Lisp Static Typing in ALGOL -based languages

® Dynamic type checking ® ALGOL (1960), Pascal (1968), C (1971)
® Values, not expressions, are tagged with types ® These are all very similar
® Operations generate type errorsuat time ® Attempt to extend type system beyond scalars
(+12) . ® array of type
(+1 2.0 ® pointer to type (&Isquo;reference’ in ALGOL)
3.

® set of type (Pascal only)
(+ 1 "eels")

Error in +: "eels" is not a nunber. .
® record of types(struct in C)

® function returningtype

q . .
Next AT Copyright © 1999,2008 Mark Domin g anq arhitrary compositions of these operations:

/* This is why we |ove C */
int *((*nurgatroyd[17])(void *));

Next $L7 Copyright © 1999,2008 Mark Domin

Next Atypical Types 18 Next Atypical Types 19

Typing: Hard to Get Right Typing: Hard to Get Right

® Goal: Compile-time checking of program soundness Pascal is pretty much dead, so let's have a...
® Pitfalls C Examp|e
O False negative: Ignore real errors #i ncl ude <stdio. h>
O False positive: Report spurious errors i{”t mai n(voi d)
unsi gned char *c;
Pascal Examples float f = 10;
var s : array [1..10] of character; for (c = (char *)&f;
s :="'hello: { You wish} c<)5|zeof(float) + (char *)&f;
c++
{----Thank you sir and may | have another! ---------- } printf ("% ", *c);
type string = array [1..40] of character; putchar(’\n");
procedure error (c: string)
begi n return O;
wite(’ ERROR '); }
wite(c); . .
witeln(’"); float.c: In function ‘main’:
end: float.c:9: warning: conparison of distinct pointer types |lacks a
error("File not found); { In your dreams } ® The warning is spurious
error(’File not found "); { You have to d
error(’'Please just kill me M. Wrth ")

Wirth agrees that this was a bad move. -
Next A7 Copyright © 1999,2008 Mark Domin
And almost every commercial implementation of Pascal fixed this problem.

Not all these fixes were mututally compatible.

Next L7 Copyright © 1999,2008 Mark Domin
>

Next Atypical Types 20 Next Atypical Types 21

C Example Typing in Pascal and C isa Failure
® The whole program was one giant type violation Many spurious errors
O But the compiler didn’t care ® So programmers ignore them

Proliferation of type-defeating features:

Next 7 Copyright © 1999,2008 Mark Domin ~ ® Casts (C)char *) (&f)

® Automatic conversions (C)

int i;
i = 1.42857; /* Silently truncated to 1 */

® Variadic functions (C)

® Union types (C and Pascal both)

var u: case tag: integer of
0: (intval: integer);
1: (realval: real);
2: (stringval: array [1..20] of character);
3: (boolval: bool ean);
end;
r : real;

u.intval = 1428457,
r = u.realval; { Gack }

® Abuse of the separate compilation facility (Pascal)

This proliferation is a sure sign of failure

Next 7 Copyright © 1999,2008 Mark Domin

Next Atypical Types 22 Next Atypical Types 23

Coping With Failure 1999 vs. Today

® Static typing, as implemented in C and Pascal, was not very technically succe @ In 1999, the Haskell type system was a hard sell

® Solution 1: Give up ® Haskell was worked on by a bunch of funny-looking ivory-tower types:
O Lisp
O APL
O AWK
O Perl (really give up:+(8/2).".".0.0.0)

Hey, that worked pretty well!

® Solution 2: Try to do better

O Haskell (and its precursors ISWIM, Miranda, ML, etc.)

O Closely related: Java 5

This hasalso worked pretty well.

Philip Wadler Martin Odersky
(University of Edinburgh) (EPFL)

Next </>Q 7 Copyright © 1999,2008 Mark Domin

Next RLYA Copyright © 1999,2008 Mark Domin

Next Atypical Types

1999 vs. Today

Martin Oder sky

® But these guys designed the Java 5 "generics" feature

24 Next Atypical Types 25

Static Typing that Works
We saw that typing in Pascal and C failed for several reasons:
® Too fine-graineddhar act er[12] vS.character[13])
® Spurious warnings ⇒ ignored warnings
® Too easy to violate (unions, casts)
® Too coarse-grained(r uct s)
® |nconvenient to use (explicit types everywhere)

These problems are surmountable!

Next </>Q 7

Copyright © 1999,2008 Mark Domin

® Which is directly derived from their experience with Haskell and related langu

O Which they also designed

® The rest of this talk is about Haskell

Next </>Q 7

Copyright © 1999,2008 Mark Domin

Atypical Types 26 Next Atypical Types 27

Next
The Haskell Programming Language Typesin Haskell

® Extremely expressive and fine-grained type system Scalars

® Many fascinating and powerful features that | will not discuss today 17 I nt eger

17.3 Fl oat
® Originally a research language ’T;"ue g‘oglr
® Solves the type problems of C and Pascal
Next K7 Copyright © 1999,2008 Mark Domin

Next 7 Copyright © 1999,2008 Mark Domin

Next

Typesin Haskell

Tuples
(17, 'x")

(12.5, 13.5, 9)
(True, False, True)

Next if;Q 7

Atypical Types

28 Next Atypical Types 29

Typesin Haskell

Lists
(I'nteger, Char) [True, False, True] [Bool]
(Float, Float, Int) [True, False, True, False] [Bool]
(Bool, Bool, Bool) [1,2,3,4,5] [Integer]
[ro, "0, 'P, 'S, 'L, "A] [Char]
" OOPSLA" [Char]

)) ® Stringis accepted as a synonym fahar]
Copyright © 1999,2008 Mark Domin

® Types like[I nt eger] this should remind you of Java types liket <I nt eger >
etc.

® Just as Java hasst <Li st <I nt eger >>, Haskell hag[| nt eger]]

[[1,2,3], [4,6], [0O,233]] [[Integer]]
["t*, "like", "pie"] [[Char]]
[17, "foo0"] Error

Next BL7

Copyright © 1999,2008 Mark Domin

Next Atypical Types 30 Next Atypical Types 31

Typesin Haskell Typesin Haskell

Polymor phism Type composition

[] [a] [(True, [1, 2, 3]),

[[1.2,3], [1, []1 [[Integer]] (Fal'se, [1),

[['p, ity e’], I 111 [[Char]] (Fal'se, [4, 5])

] [(Bool, [Integer])]

(rr, n ([al, [b])

(Better examples coming up shortly.)
Next K7 Copyright © 1999,2008 Mark Domin

Next 7 Copyright © 1999,2008 Mark Domin

Next Atypical Types

Typesin Haskell

Function types

not Bool -> Bool

wor ds String -> [String]
unwor ds [String] -> String
I ength [a] -> Int

reverse [a] ->[a]

head [a] -> a

tail [a] ->[a]

: a->[a] ->[a]

® : is the "cons" operation

O [1, 2, 3] isshorthand fot: 2: 3:[]

Next ?;Q 7

32 Next Atypical Types 33

Overloading
® Type classes are something like object classes in Java
® Several different types might be instances of the same class
O This means they must support some basic set of operations
® For example, any typemight be an instance of tisaow class

O If so, there must be a functiehow of typet ->Stri ng
O The Haskell standard library makes all the standard types instargresvof

O So for example:

show 137 yi el ds "137"
show True yi el ds "True"
show " Foo" yi el ds "\"Foo\""

Copyright © 1999,2008 Mark Domin @ |f you define your own type, you can definerw method

O And you can declare your type to be an instanchof
® Notation:

Show | nt eger ("Integer is an instance of Show')
Show Bool ("Bool is an instance of Show')
Show [Char] ("[Char] is an instance of Show')

Next ?;Q 7

Copyright © 1999,2008 Mark Domin

Next Atypical Types

Overloading

® Theshow function itself has this type:
(Show a) => a -> String
® That is, it takes an argument of typand returns &tri ng
O Butonly ifa is an instance @how

O The(show a) is called aontext

® Theshow function forBool has typeBool -> String

34 Next Atypical Types 35

Overloading
® Numeric operations are similarly overloaded
® The type of+is
(Numa) => a->a->a
® So you can add twint eger arguments and get anotheit eger
® Add twoFl oat arguments and get anotheoat
® Define your ownvect or type

O Declare that it's an instance Kim

Next ﬁ,;@ 7 Copyright © 1999,2008 Mark Domin O Define+ (and*, etc.) operations on it

O And then add tweect or arguments and get anothect or

O But if you mess up and addvact or to anl nt eger you'll get a compile-time
error

Next ?;Q / Copyright © 1999,2008 Mark Domin

Next Atypical Types 36 Next Atypical Types 37

Overloaded constants Overloaded constants
® Constants like 163 are taken to be shorthand for ® |n particular, this works:
from nteger 163 163 + 13.5
® Wheref r oni nt eger has type ® 163 gets the same type as 13.5 here
(Numa) => Integer -> a O An appropriate value is manufactured by an appropriate version of

) from nt eger
® SO you can uselb3" as a constant of any numeric type

® No nonsense like this:

O As long as that type defines an appropriatem nt eger function
doubl e fahrenheit = 98.6;
doubl e celsiusl = 5/9 * (fahrenheit - 32);
doubl e cel sius2 = (fahrenheit - 32) * 5/9;

Next ﬁf;Q 7 Copyright © 1999,2008 Mark Domin printf("% 1f\n% 1f\n", celsiusl, celsius2);
/* This is why we love C */

0.0
37.0

® A constant likel63 actually has this type:
(Numa) => a

® "Any typea, as long as it's an instancenafm"

Next B Copyright © 1999,2008 Mark Domin

Next Atypical Types 38

Overloading
® Early versions of this type system had problems with equality

® \What's the type of=?

Something likea -> a -> Bool

O Except thata must not be a function type

Haskell solves this problem:
O (Eq a) => a -> a -> Bool

O And function types are not instancesqf

Similarly, ordered types should be declared instancesdf

O Values can be compared with <, >, etc.

BL7

Next Copyright © 1999,2008 Mark Domin

Next 39

Big Deal?

One big deal is that you dwt need to declare types!

Atypical Types

Let’s consider everyone’s favorite example:

int fact(int n) {
if (n 0) return 1;
else return n * fact(n-1);

In Haskell, that looks almost the same:

1
n * fact(n-1)

fact 0O
fact n

Hey, where did thent s go?

BL7

Next Copyright © 1999,2008 Mark Domin

Next Atypical Types

Typeinference

The compiler says to itself:

fact 0 = 1
fact n = n * fact(n-1)

"0 has typg N\um a) => a."

Next YA

40 Next Atypical Types

Typeinference

fact :: (Numa) =>a->b

"0 has typg N\um a) => a.

fact 0
fact n

1
n * fact(n-1)

Copyright © 1999,2008 Mark Domin "Son must have that type too."

Next ?;Q 7

41

Copyright © 1999,2008 Mark Domin

Next Atypical Types

Typeinference

fact :: (Numa) =>a->b
n: (Numa)=>a

"0 has typg Num a) => a."

"Son must have that type too."

fact 0
fact n

1
n * fact(n-1)

"n- 1 checks out okay."

Next ?;Q 7

42 Next Atypical Types

Typeinference
fact :: (Numa) =>a->b
n: (Numa)=>a

"n has typg Num a) => a.

1
n * fact(n-1)

fact 0
fact n

"* requires two arguments of the same type, both instanoesdf

"Sofact must returqiNum a) => a also."

Copyright © 1999,2008 Mark Domin Next K7

43

Copyright © 1999,2008 Mark Domin

Next Atypical Types

Typeinference

fact :: (Numa) =>a->a
n: (Numa)=>a
"fact must returi{Num a) => a also."

fact 0
fact n

1
n * fact(n-1)

"The return value of is consistent with that."

Next BT

44 Next Atypical Types 45

Typeinference

fact :: (Numa) =>a->a
n: (Numa)=>a

fact 0O
fact n

1
n * fact(n-1)
"Okay, everything checks out!"

® And if you ask it, it willtell you the type of act :

Copyright © 1999,2008 Mark Domin fact -2 (Numa) =>a ->a

® |f you ask for the factorial of amt eger, you get back annt eger
® |f you ask for the factorial of & oat , you get back &l oat
® [f you ask for the factorial of &t ri ng, you get a compile-time error

O Becausest ri ng is not an instance ofum

Next ?;Q / Copyright © 1999,2008 Mark Domin

Next Atypical Types 46

Haskell types are always corr ect

fact (Numa) =>a -> a
® Ask the compiler to tell you the type of some function
® |s it what you expect?

O Yes? Okay then!

O If not, your program almost certainly has a bug.

m A real bug, not a nonsense string-the-wrong-length bug

YR4Y

Next Copyright © 1999,2008 Mark Domin

Next Atypical Types 47

Haskell types are always corr ect

® \When there’s a type error, you do not have to groan and pull out a bunch of ¢
O Or figure out to trick the compiler into accepting it anyway
O Instead, you stop and ask yourself "What did | screw up this time?"

O And when you figure it out, you say "Whew! Good thing | caught that."

Next Copyright © 1999,2008 Mark Domin

YR4Y

Next

Atypical Types

Type Inference Example 2

Next

sunof []
sunof (h:t)

0

h + sunof t

.

>

&7

48 Next Atypical Types

Type Inference

sunof []
sunof (h:t)

0
h + sunof t

"The argument i§] ."
Copyright © 1999,2008 Mark Domin ' 1hat's some kind of list, saya] ."

"And let’'s say that the return typetdsor now."

Next ?;Q 7

49

Copyright © 1999,2008 Mark Domin

Next Atypical Types 50 Next Atypical Types 51

Type Inference Type Inference
sumof :: p] -> b sumof :: p] -> b
h: a
"The argument has type] ." to [a]
23%: E]h t) z ﬂ + sunof t "h must have typa andt must have typga] ."
"h: t is also a list, so that's okay." sunof E]h t) = ot t
"h must have type andt must have typga] ." "We're addingh to the return value afunof ."
{‘ ‘["‘a] "So the return value must healso."
"And + is only defined for instances Rfim soa is such an instance
Next i’;@ 7 Copyright © 1999,2008 Mark Domin "So the return value is really of type (Nan=>a."

sumof :: (Numa) =>[a] -> a

Next K7 Copyright © 1999,2008 Mark Domin

Next Atypical Types 52

Type Inference

sumof :: (Numa) => [a] -> a

h: (Numa) =>a

t: (Numa) => [a]

"So the return value is really (Nua) =>a."
sunof [] =0
sunmof (h:t) = h + sunof t

"That fits with the other return value of 0."
"And everything else checks out okay."

® |f you ask, it will say that the type is:

sumof :: (Numa) => [a] -> a
® |f we had pup. 0 instead of 0, it would have deduced:
(Fractional -> a

sunof :: a) => [a]

® (Fractional is a subclass ofum)
O Among other things, it supports division

e |f we had put Fred" we would have gotten a type error
O Becaussst ri ng is not an instance ofum

BT

Next Copyright © 1999,2008 Mark Domin

Next Atypical Types

Type Inference Example 3

mep(f, [1) =[]
t f

[
map(f, h:t) = f(h) : map(f, t)

Next ?;Q 7

53

Copyright © 1999,2008 Mark Domin

Next

Atypical Types 54 Next Atypical Types
Type Inference Type Inference
f, = . }
ﬁﬁEf, m) =[%(h) . map(f, t) ;"_‘_""p"g"[a])w
"f has some type, say and[] has some list type, s@y] ."
"[1 has some list type, sgy] ."
Next K& 7 Copyright © 1999,2008 Mark Domin (. [1) = L]
map(f, h:t) = f(h) : map(f, t)

"h must have type andt must have typga] ."

BT

Next

55

Copyright © 1999,2008 Mark Domin

Next Atypical Types 56

Type Inference

map : @, [a]) ->q

fi p
h: a
t: [a

"h must have typa."

mep(f,
mep(f,

[1 =

[]
h:t) = f

(h) :

"f is used as a function appliedrtd

map(f, t)

"Sof must have type -> b for someb."

"f must take an argument of typand return a result of type"
<
b7

Next Copyright © 1999,2008 Mark Domin

Next Atypical Types 57

Type Inference

map :: @->b, [a]) ->q

fi a->b
h: a
t: [a

"f must take an argument of typend return a result of type"

mep(f, []
f

mep(f,

[1 =

h:t) = f(h) : t)

"The result of is consed to the result eép."

mep(f,

"Somap must returr b] ."

BL7

Next Copyright © 1999,2008 Mark Domin

Next Atypical Types 58

Type Inference

map :: @->b, [a]) -> [b]
fi a->b

h: a

t: [a

"map must return b] ."

mep(f,
mep(f,

[1 = 1[I
h:t) = f(h) : [map(f, t)

"That fits with the return value in the other clause."
"Everything else checks out okay."

® |f you ask the compiler, it will say that the type is:

mep :: (a->b, [a]) -> [b]

BT

Next Copyright © 1999,2008 Mark Domin

Next

Atypical Types 59

Type Inference Example 3 Continued

map :: (a-> b,

[al)

Normally map is defined as aurried function

-> [b]

Instead of this:

map(f, [1) =[]
map(f, h:t) = f(h) : map(f, t)
We write this:
map f [] =[]
map f (h:t) = f(h) map f t
And the type is:
mp :: (a->b) ->[a] ->[h]
Then for example:
length :: [a] -> Integer
map length ["I", "like", "pie"]
[1, 4, 3]
length_all = map |l ength
length_all :: [[a]] -> [Integer]
length_all ["I", "like", "pie"]
[1, 4, 3]
Next K7 Copyright © 1999,2008 Mark Domin

Next Atypical Types

Lifewith Haskell

The Haskell type system has a lot of unspectacular successes.

Programming in Haskell is pleasant
® No type declarations—everything is automatic
® You get quite a few type errors (darn!)
® Butevery error indicates a reakerious problem

® Not likelint or C or Pascal.

Next if;Q 7

Copyright © 1999,2008 Mark Domin

60 Next Atypical Types 61

A Spectacular Example
Here’s aspectacular example, due to Andrew R. Koenig.
We will write a merge sort function.
Strategy:
® Split list into two lists
® Sort each list separately
® Merge sorted lists together

We expect the type of this function to be

(Od a) =>[a] ->[a]

Next ?;Q 7

Copyright © 1999,2008 Mark Domin

Next Atypical Types
Splitting
split [1 =([]._[1)
split [a] = ([a]. [])
split (a:b:rest) = (a:a’, b:b")
where (a', b') = split rest

split :: [t] -> ([t], [t])

Next BT

62 Next Atypical Types 63

Merging
merge [] Is =1s
nerge Is [] =1s

nerge (a:as) (b:bs) =
if a<=bthen a: nerge as (b:bs)
el se b : nmerge (a:as) bs

nerge :: (Odt) =>[t] ->[t] -> [t]

Copyright © 1999,2008 Mark Domin Next ?;Q 7 Copyright © 1999,2008 Mark Domin

Next Atypical Types

Merge Sort

sort [] =[]
sort Is = nmerge (sort p) (sort Q)
where (p,) = split Is
® |f we ask Haskell for the type ebrt, it says:

sort :: (Oda) =>[t] ->[a]

Huh??

Next if;Q 7

64 Next Atypical Types 65
Huh??

sort :: (Ord a) => [t] ->[4a]
® This says that we could putamy kind of list[t]
O It does not even have to be ordered
® And what we get out has nothing to do with what we put in
O We could put in a list afnt eger and get out a list &t ri ng

® Which is impossible

Copyright © 1999,2008 Mark Domin

Next 7 Copyright © 1999,2008 Mark Domin

Next Atypical Types 66 Next Atypical Types 67

Huh??

“Go out with you? Sure, when
Arnold Schwarzenegger is elected
president.”

“But he isn’'t an American
sort :: (Od a) =>[t] ->[4] citizen.”

® But this isimpossible “Right!”
One way the impossible can occur is if it never can occur

Next </>Q Z Copyright © 1999,2008 Mark Domin

Next K7 Copyright © 1999,2008 Mark Domin

Next Atypical Types 68 Next Atypical Types 69

t
HUh?’)? :g:t I[]s n’Lrge (sort p) (sort Q)
where (p, q) =split Is

sort :: (Od a) =>[t] ->[a
() (] (2l In fact, this function has a bug.

“Given a list of numbers, it could return a list of strings.”
® |t never returns

“But it can’t possibly return a list of strings.”
O (Except when the input is empty.)

“Right!”
O (In which case itloes return a list of typ¢a])

q . .
Next A Copyright © 1999,2008 Mark Domin . Lo
’>Q % Pyro ® Type checking found an infinite loop bug!
® At compile time!!

Next $R7 Copyright © 1999,2008 Mark Domin

Next
Wher e sthe Bug?
sort [] =
sort Is = nmerge (sort
where (p, q) = split

BL7

Next

Atypical Types 70 Next Atypical Types

Solution: Add a clause

sort [] =[]

sort [x] = [X]
p) (sort q) sort |s = merge (sort p) (sort q)
I's where (p, q) = split Is

Suppose the function is trying to sort a one-elel The type is now:
list [x]
sort ::

(Od a) =>[a] ->[a]

It callssplit and getg[x], [])

as we expected it should be.

BT

Then it tries to recursively sort the two parts
Next
Sorting[] is okay.

Sorting[x] puts it into an infinite loop

Copyright © 1999,2008 Mark Domin

71

Copyright © 1999,2008 Mark Domin

Next

Summary

Atypical Types

72 Next Atypical Types 73

Thank you!

They say to allot 3–5 minutes per slidig

So | won't pretend that there will be time for
questions

(sorry)

Please email me or catch me in the hallway

http://pic.blog.plo

mjd@plover.co

Next K7 Copyright © 1999,2008 Mark Domin

Next Atypical Types 74 Next Atypical Types

Solution: Add a clause

Thank you!

They say to allot 3–5 minutes per slidig

sort [] =[]
sort [x] = [x]

sort I's = merge (sort p) (sort Q)
So | won't pretend that there will be time for where (p,) = split Is

questions The type is now:

(sorry) sort :: (Ord a) => [a] -> [4]

as we expected it should be.

Next %Q’ 7

Please email me or catch me in the hallway

http://pic.blog.plo

mjd@plover.co

Next K7 Copyright © 1999,2008 Mark Domin

75

Copyright © 1999,2008 Mark Domin

Next

Summary

Atypical Types

76 Next Atypical Types 77

Thank you!

They say to allot 3–5 minutes per slidig

So | won't pretend that there will be time for
questions

(sorry)

Please email me or catch me in the hallway

http://pic.blog.plo

mjd@plover.co

Next K7 Copyright © 1999,2008 Mark Domin

Next Atypical Typing 78

Thank you!

They say to allot 3–5 minutes per slidig

So | won't pretend that there will be time for
questions

(sorry)

Please email me or catch me in the hallway

http://pic.blog.plo

mjd@plover.co

Next K7 Copyright © 1999,2008 Mark Domin

