
Next Atypical Types 1

Atypical Types

v 1.0

Mark Jason Dominus

23 October 2008

Slides online at:

http://pic.blog.plover.com/OOPSLA/

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 2

Good AFTERNOON.

I am Mark Dominus.

Thank you for inviting me to NASHVILLE.

It is a real honor to be speaking here at OOPSLA.

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 3

Shameful confession

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 4

In the programming community, we see a lot of holy wars.

Some of these are merely matters of personal preference.

They go on forever.

For example, should one use vi or emacs?

It can be easy to forget that other arguments are eventually resolved.

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 5

For example, structured programming, or goto?

This one is finished now.

The bodies of the goto supporters are buried pretty deep.

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 6

Before that, there was a holy war about high-level
languages vs. assembly language.

I caught the tail end of it when I began
programming in the 1970’s.

"High-level languages are inefficient," said the
assembly language proponents.

And they were right.

They lost anyway.

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 7

Manual
memory
allocation vs.
automatic
garbage
collection.

I didn’t
expect to see
this resolved
as soon as it
was.

But the
advent of
Java ended
that
discussison.

Right or
wrong,
garbage
collection has
won.

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 8

One of these discussions that is still going on
concerns strong vs. weak type systems.

C and Pascal programmers used to argue a lot
about this in the 1980’s.

Which is kind of funny, since C and Pascal have
almost exactly the same type system.

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 9

In 1999 ago I gave a talk on this topic.

1999 title: "Strong Typing Doesn’t Have to Suck."

(It was an audience of Perl programmers.)

For Perl programmers, any kind of automatic
check is a hard sell.

Perl’s motto is "Enough rope".

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 10

I said the question was still open.

In 1999, there was no well-known static type system that did not suck.

(I discussed SML, an academic research language.)

At the time, Java’s type system was a craptastic throwback to the 1970’s.

In 2008, I think Java 5.0 is a persuasive argument in favor of static typing.

Let’s look at the history a bit.

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 11

Why Types?
Sherman, set the WABAC machine for 1955!

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 12

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 13

I think this idea first appeared in COBOL

It’s a pretty good idea anyway

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 14

Early Type Systems: FORTRAN
(This is Fortran 77, but early Fortran was similar.)

INTEGER

INTEGER*2, INTEGER*4, INTEGER*8

LOGICAL (Fortran jargon for ‘boolean’)

LOGICAL*1 (synonym: BYTE), LOGICAL*2, LOGICAL*4, LOGICAL*8

REAL

REAL*4, REAL*8 (synonym: DOUBLE PRECISION), REAL*16

COMPLEX

COMPLEX*8, COMPLEX*16 (synonym: DOUBLE COMPLEX), COMPLEX*32

Now if you write:

 INTEGER I
 REAL R,S

 R = I + S

then the compiler can automatically generate the correct instructions

Static type checking

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 15

Early Type Systems: FORTRAN
Side note: Declaration is optional, defaults to:

INTEGER for variables that begin with I, J, K, L, M, N

REAL for other variables

Array types also:

 INTEGER A(10)

Functions have types:

 FUNCTION F(X)
 INTEGER F, X
 F = X+1
 RETURN

 N = F(37)

Static type checking

Expressions have types, determined at compile time

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 16

Early Type Systems: Lisp
Dynamic type checking

Values, not expressions, are tagged with types

Operations generate type errors at run time

 (+ 1 2)
 3

 (+ 1 2.0)
 3.0

 (+ 1 "eels")
 Error in +: "eels" is not a number.

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 17

Static Typing in ALGOL-based languages
ALGOL (1960), Pascal (1968), C (1971)

These are all very similar

Attempt to extend type system beyond scalars

array of type

pointer to type (‘reference’ in ALGOL)

set of type (Pascal only)

record of types (struct in C)

function returning type

And arbitrary compositions of these operations:

 /* This is why we love C */
 int *((*murgatroyd[17])(void *));

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 18

Typing: Hard to Get Right
Goal: Compile-time checking of program soundness

Pitfalls

False negative: Ignore real errors

False positive: Report spurious errors

Pascal Examples

 var s : array [1..10] of character;
 s := ’hello’; { You wish }

 {----Thank you sir and may I have another! ----------}

 type string = array [1..40] of character;
 procedure error (c: string)
 begin
 write(’ERROR: ’);
 write(c);
 writeln(’’);
 end;

 error(’File not found’); { In your dreams }
 error(’File not found ’); { You have to do this
 error(’Please just kill me Mr. Wirth ’);

Wirth agrees that this was a bad move.

And almost every commercial implementation of Pascal fixed this problem.

Not all these fixes were mututally compatible.

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 19

Typing: Hard to Get Right
Pascal is pretty much dead, so let’s have a...

C Example

 #include <stdio.h>

 int main(void)
 {
 unsigned char *c;
 float f = 10;

 for (c = (char *)&f;
 c < sizeof(float) + (char *)&f;
 c++) {
 printf("%u ", *c);
 }
 putchar(’\n’);

 return 0;
 }

 float.c: In function ‘main’:
 float.c:9: warning: comparison of distinct pointer types lacks a cast

The warning is spurious

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 20

C Example
The whole program was one giant type violation

But the compiler didn’t care

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 21

Typing in Pascal and C is a Failure
Many spurious errors

So programmers ignore them

Proliferation of type-defeating features:

Casts (C) (char *)(&f)

Automatic conversions (C)

 int i;
 i = 1.42857; /* Silently truncated to 1 */

Variadic functions (C)

Union types (C and Pascal both)

 var u: case tag: integer of
 0: (intval: integer);
 1: (realval: real);
 2: (stringval: array [1..20] of character);
 3: (boolval: boolean);
 end;
 r : real;

 u.intval = 1428457;
 r = u.realval; { Gack }

Abuse of the separate compilation facility (Pascal)

This proliferation is a sure sign of failure

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 22

Coping With Failure
Static typing, as implemented in C and Pascal, was not very technically successful

Solution 1: Give up

Lisp

APL

AWK

Perl (really give up: +(8/2).".".0.0.0)

Hey, that worked pretty well!

Solution 2: Try to do better

Haskell (and its precursors ISWIM, Miranda, ML, etc.)

Closely related: Java 5

This has also worked pretty well.

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 23

1999 vs. Today
In 1999, the Haskell type system was a hard sell

Haskell was worked on by a bunch of funny-looking ivory-tower types:

Philip Wadler Martin Odersky

(University of Edinburgh) (EPFL)

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 24

1999 vs. Today

Philip Wadler Martin Odersky

But these guys designed the Java 5 "generics" feature

Which is directly derived from their experience with Haskell and related languages

Which they also designed

The rest of this talk is about Haskell

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 25

Static Typing that Works
We saw that typing in Pascal and C failed for several reasons:

Too fine-grained (character[12] vs. character[13])

Spurious warnings ⇒ ignored warnings

Too easy to violate (unions, casts)

Too coarse-grained (structs)

Inconvenient to use (explicit types everywhere)

These problems are surmountable!

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 26

The Haskell Programming Language
Extremely expressive and fine-grained type system

Many fascinating and powerful features that I will not discuss today

Originally a research language

Solves the type problems of C and Pascal

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 27

Types in Haskell

Scalars

 17 Integer
 17.3 Float
 ’x’ Char
 True Bool

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 28

Types in Haskell

Tuples

 (17, ’x’) (Integer, Char)
 (12.5, 13.5, 9) (Float, Float, Int)
 (True, False, True) (Bool, Bool, Bool)

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 29

Types in Haskell

Lists

 [True, False, True] [Bool]
 [True, False, True, False] [Bool]
 [1,2,3,4,5] [Integer]
 [’O’, ’O’, ’P’, ’S’, ’L’, ’A’] [Char]
 "OOPSLA" [Char]

String is accepted as a synonym for [Char]

Types like [Integer] this should remind you of Java types like List<Integer>
etc.

Just as Java has List<List<Integer>>, Haskell has [[Integer]]

 [[1,2,3], [4,6], [0,233]] [[Integer]]
 ["I", "like", "pie"] [[Char]]
 [17, "foo"] Error

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 30

Types in Haskell

Polymorphism

 [] [a]
 [[1,2,3], [], []] [[Integer]]
 [[’p’, ’i’, ’e’], [], []] [[Char]]

 ([], []) ([a], [b])

(Better examples coming up shortly.)

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 31

Types in Haskell

Type composition

 [(True, [1, 2, 3]),
 (False, []),
 (False, [4, 5])
] [(Bool, [Integer])]

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 32

Types in Haskell

Function types

 not Bool -> Bool
 words String -> [String]
 unwords [String] -> String

 length [a] -> Int
 reverse [a] -> [a]

 head [a] -> a
 tail [a] -> [a]
 : a -> [a] -> [a]

: is the "cons" operation

[1,2,3] is shorthand for 1:2:3:[]

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 33

Overloading
Type classes are something like object classes in Java

Several different types might be instances of the same class

This means they must support some basic set of operations

For example, any type t might be an instance of the Show class

If so, there must be a function show of type t -> String

The Haskell standard library makes all the standard types instances of Show

So for example:

 show 137 yields "137"
 show True yields "True"
 show "Foo" yields "\"Foo\""

If you define your own type, you can define a show method

And you can declare your type to be an instance of Show

Notation:

 Show Integer ("Integer is an instance of Show")
 Show Bool ("Bool is an instance of Show")
 Show [Char] ("[Char] is an instance of Show")

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 34

Overloading
The show function itself has this type:

 (Show a) => a -> String

That is, it takes an argument of type a and returns a String

But only if a is an instance of Show

The (Show a) is called a context

The show function for Bool has type Bool -> String

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 35

Overloading
Numeric operations are similarly overloaded

The type of + is

 (Num a) => a -> a -> a

So you can add two Integer arguments and get another Integer

Add two Float arguments and get another Float

Define your own Vector type

Declare that it’s an instance of Num

Define + (and *, etc.) operations on it

And then add two Vector arguments and get another Vector

But if you mess up and add a Vector to an Integer you’ll get a compile-time
error

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 36

Overloaded constants
Constants like 163 are taken to be shorthand for

 fromInteger 163

Where fromInteger has type

 (Num a) => Integer -> a

So you can use "163" as a constant of any numeric type

As long as that type defines an appropriate fromInteger function

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 37

Overloaded constants
In particular, this works:

 163 + 13.5

163 gets the same type as 13.5 here

An appropriate value is manufactured by an appropriate version of
fromInteger

No nonsense like this:

 double fahrenheit = 98.6;
 double celsius1 = 5/9 * (fahrenheit - 32);
 double celsius2 = (fahrenheit - 32) * 5/9;

 printf("%.1f\n%.1f\n", celsius1, celsius2);

 /* This is why we love C */

 0.0
 37.0

A constant like 163 actually has this type:

 (Num a) => a

"Any type a, as long as it’s an instance of Num."

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 38

Overloading
Early versions of this type system had problems with equality

What’s the type of ==?

Something like a -> a -> Bool

Except that a must not be a function type

Haskell solves this problem:

(Eq a) => a -> a -> Bool

And function types are not instances of Eq

Similarly, ordered types should be declared instances of Ord

Values can be compared with <, >, etc.

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 39

Big Deal?
One big deal is that you do not need to declare types!

Let’s consider everyone’s favorite example:

 int fact(int n) {
 if (n == 0) return 1;
 else return n * fact(n-1);
 }

In Haskell, that looks almost the same:

 fact 0 = 1
 fact n = n * fact(n-1)

Hey, where did the ints go?

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 40

Type inference
The compiler says to itself:

 fact 0 = 1
 fact n = n * fact(n-1)

"0 has type (Num a) => a."

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 41

Type inference
fact :: (Num a) => a -> b

"0 has type (Num a) => a."

 fact 0 = 1
 fact n = n * fact(n-1)

"So n must have that type too."

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 42

Type inference
fact :: (Num a) => a -> b

n :: (Num a) => a

"0 has type (Num a) => a."

"So n must have that type too."

 fact 0 = 1
 fact n = n * fact(n-1)

"n-1 checks out okay."

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 43

Type inference
fact :: (Num a) => a -> b

n :: (Num a) => a

"n has type (Num a) => a."

 fact 0 = 1
 fact n = n * fact(n-1)

"* requires two arguments of the same type, both instances of Num."

"So fact must return (Num a) => a also."

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 44

Type inference
fact :: (Num a) => a -> a

n :: (Num a) => a

"fact must return (Num a) => a also."

 fact 0 = 1
 fact n = n * fact(n-1)

"The return value of 1 is consistent with that."

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 45

Type inference
fact :: (Num a) => a -> a

n :: (Num a) => a

 fact 0 = 1
 fact n = n * fact(n-1)

"Okay, everything checks out!"

And if you ask it, it will tell you the type of fact:

 fact :: (Num a) => a -> a

If you ask for the factorial of an Integer, you get back an Integer

If you ask for the factorial of a Float, you get back a Float

If you ask for the factorial of a String, you get a compile-time error

Because String is not an instance of Num

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 46

Haskell types are always correct
 fact :: (Num a) => a -> a

Ask the compiler to tell you the type of some function

Is it what you expect?

Yes? Okay then!

If not, your program almost certainly has a bug.

A real bug, not a nonsense string-the-wrong-length bug

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 47

Haskell types are always correct

When there’s a type error, you do not have to groan and pull out a bunch of casts

Or figure out to trick the compiler into accepting it anyway

Instead, you stop and ask yourself "What did I screw up this time?"

And when you figure it out, you say "Whew! Good thing I caught that."

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 48

Type Inference Example 2
 sumof [] = 0
 sumof (h:t) = h + sumof t

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 49

Type Inference
 sumof [] = 0
 sumof (h:t) = h + sumof t

"The argument is []."

"That’s some kind of list, say [a]."

"And let’s say that the return type is b for now."

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 50

Type Inference
sumof :: [a] -> b

"The argument has type [a]."

 sumof [] = 0
 sumof (h:t) = h + sumof t

"h:t is also a list, so that’s okay."

"h must have type a and t must have type [a]."

 h :: a
 t :: [a]

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 51

Type Inference
sumof :: [a] -> b

h :: a

t :: [a]

"h must have type a and t must have type [a]."

 sumof [] = 0
 sumof (h:t) = h + sumof t

"We’re adding h to the return value of sumof."

"So the return value must be a also."

"And + is only defined for instances of Num, so a is such an instance

"So the return value is really of type (Num a) => a."

 sumof :: (Num a) => [a] -> a

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 52

Type Inference
sumof :: (Num a) => [a] -> a

h :: (Num a) => a

t :: (Num a) => [a]

"So the return value is really (Num a) => a."

 sumof [] = 0
 sumof (h:t) = h + sumof t

"That fits with the other return value of 0."

"And everything else checks out okay."

If you ask, it will say that the type is:

 sumof :: (Num a) => [a] -> a

If we had put 0.0 instead of 0, it would have deduced:

 sumof :: (Fractional a) => [a] -> a

(Fractional is a subclass of Num)

Among other things, it supports division

If we had put "Fred" we would have gotten a type error

Because String is not an instance of Num

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 53

Type Inference Example 3
 map(f, []) = []
 map(f, h:t) = f(h) : map(f, t)

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 54

Type Inference
 map(f, []) = []
 map(f, h:t) = f(h) : map(f, t)

"f has some type, say p, and [] has some list type, say [a]."

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 55

Type Inference
map :: (p, [a]) -> q

f :: p

"[] has some list type, say [a]."

 map(f, []) = []
 map(f, h:t) = f(h) : map(f, t)

"h must have type a and t must have type [a]."

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 56

Type Inference
map :: (p, [a]) -> q

f :: p

h :: a

t :: [a]

"h must have type a."

 map(f, []) = []
 map(f, h:t) = f(h) : map(f, t)

"f is used as a function applied to h."

"So f must have type a -> b for some b."

"f must take an argument of type a and return a result of type b."

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 57

Type Inference
map :: (a -> b, [a]) -> q

f :: a -> b

h :: a

t :: [a]

"f must take an argument of type a and return a result of type b."

 map(f, []) = []
 map(f, h:t) = f(h) : map(f, t)

"The result of f is consed to the result of map."

"So map must return [b]."

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 58

Type Inference
map :: (a -> b, [a]) -> [b]

f :: a -> b

h :: a

t :: [a]

"map must return [b]."

 map(f, []) = []
 map(f, h:t) = f(h) : [map(f, t)

"That fits with the return value in the other clause."

"Everything else checks out okay."

If you ask the compiler, it will say that the type is:

 map :: (a -> b, [a]) -> [b]

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 59

Type Inference Example 3 Continued
 map :: (a -> b, [a]) -> [b]

Normally map is defined as a curried function

Instead of this:

 map(f, []) = []
 map(f, h:t) = f(h) : map(f, t)

We write this:

 map f [] = []
 map f (h:t) = f(h) : map f t

And the type is:

 map :: (a -> b) -> [a] -> [b]

Then for example:

 length :: [a] -> Integer
 map length ["I", "like", "pie"]
 [1, 4, 3]

 length_all = map length

 length_all :: [[a]] -> [Integer]
 length_all ["I", "like", "pie"]
 [1, 4, 3]

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 60

Life with Haskell
The Haskell type system has a lot of unspectacular successes.

Programming in Haskell is pleasant

No type declarations—everything is automatic

You get quite a few type errors (darn!)

But every error indicates a real, serious problem

Not like lint or C or Pascal.

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 61

A Spectacular Example
Here’s a spectacular example, due to Andrew R. Koenig.

We will write a merge sort function.

Strategy:

Split list into two lists

Sort each list separately

Merge sorted lists together

We expect the type of this function to be

 (Ord a) => [a] -> [a]

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 62

Splitting
 split [] = ([], [])
 split [a] = ([a], [])
 split (a:b:rest) = (a:a’, b:b’)
 where (a’, b’) = split rest

 split :: [t] -> ([t], [t])

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 63

Merging
 merge [] ls = ls
 merge ls [] = ls
 merge (a:as) (b:bs) =
 if a <= b then a : merge as (b:bs)
 else b : merge (a:as) bs

 merge :: (Ord t) => [t] -> [t] -> [t]

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 64

Merge Sort
 sort [] = []
 sort ls = merge (sort p) (sort q)
 where (p, q) = split ls

If we ask Haskell for the type of sort, it says:

 sort :: (Ord a) => [t] -> [a]

Huh??

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 65

Huh??

 sort :: (Ord a) => [t] -> [a]

This says that we could put in any kind of list [t]

It does not even have to be ordered

And what we get out has nothing to do with what we put in

We could put in a list of Integer and get out a list of String

Which is impossible

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 66

Huh??

 sort :: (Ord a) => [t] -> [a]

But this is impossible

One way the impossible can occur is if it never can occur

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 67

“Go out with you? Sure, when
Arnold Schwarzenegger is elected
president.”

“But he isn’t an American
citizen.”

“Right!”

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 68

Huh???
 sort :: (Ord a) => [t] -> [a]

“Given a list of numbers, it could return a list of strings.”

“But it can’t possibly return a list of strings.”

“Right!”

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 69

 sort [] = []
 sort ls = merge (sort p) (sort q)
 where (p, q) = split ls

In fact, this function has a bug.

It never returns

(Except when the input is empty.)

(In which case it does return a list of type [a])

Type checking found an infinite loop bug!

At compile time!!

!!!!!!!!!!

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 70

Where’s the Bug?
 sort [] = []
 sort ls = merge (sort p) (sort q)
 where (p, q) = split ls

Suppose the function is trying to sort a one-element
list [x]

It calls split and gets ([x], [])

Then it tries to recursively sort the two parts

Sorting [] is okay.

Sorting [x] puts it into an infinite loop

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 71

Solution: Add a clause

 sort [] = []
 sort [x] = [x]
 sort ls = merge (sort p) (sort q)
 where (p, q) = split ls

The type is now:

 sort :: (Ord a) => [a] -> [a]

as we expected it should be.

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 72

Summary

Next Atypical Types 73

Thank you!
They say to allot 3–5 minutes per slide

So I won’t pretend that there will be time for
questions

(sorry)

Please email me or catch me in the hallway

http://pic.blog.plover.com/OOPSLA/

mjd@plover.com

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 74

Thank you!
They say to allot 3–5 minutes per slide

So I won’t pretend that there will be time for
questions

(sorry)

Please email me or catch me in the hallway

http://pic.blog.plover.com/OOPSLA/

mjd@plover.com

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 75

Solution: Add a clause

 sort [] = []
 sort [x] = [x]
 sort ls = merge (sort p) (sort q)
 where (p, q) = split ls

The type is now:

 sort :: (Ord a) => [a] -> [a]

as we expected it should be.

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Types 76

Summary

Next Atypical Types 77

Thank you!
They say to allot 3–5 minutes per slide

So I won’t pretend that there will be time for
questions

(sorry)

Please email me or catch me in the hallway

http://pic.blog.plover.com/OOPSLA/

mjd@plover.com

Next Copyright © 1999,2008 Mark Dominus

Next Atypical Typing 78

Thank you!
They say to allot 3–5 minutes per slide

So I won’t pretend that there will be time for
questions

(sorry)

Please email me or catch me in the hallway

http://pic.blog.plover.com/OOPSLA/

mjd@plover.com

Next Copyright © 1999,2008 Mark Dominus

