Assignment #2

Due Date: Tuesday, 28 July 1992

15 July 1992

You will write a program which sorts the lines in its input into alphabetical
order.

1 Requirements

Your program will read lines of text from the input source. Each line will be
separated from the next by a newline character, which is not part of the line.
Your program will print out the input lines, but in alphabetical order.

If the input contains many lines, you do not have to read and output them
all, but you must process at least the first 500 lines in the input. If a line is very
long, you may truncate it, but you must save at least the first 80 characters of
each line.

Your program will examine its command-line arguments to see where the in-
put comes from and where the output must go to: The first argument will name
an input file, the second will name an output file. If one or both arguments are
missing, the input or output will default to stdin and stdout, respectively. Your
program must recover gracefully from incorrect arguments, printing appropriate
messages if (for example) the user supplies too many arguments or names a file
that does not exist.

2 What to Hand in

You should hand in a disk with your source code and an executable, and any
special instructions to me. You may choose to supply a log file that demonstrates
your program, if you like. I will not accept paper copies of solutions to this
assignment.



3 Assignment-Specific Points

Seven points for printing a correct sorted list. Two points each for handling
very long lists and for handling long lines correctly. Two points for allowing
command-line arguments to specify input and output sources. One point for
recovering gracefully from argument errors.

4 About Sorting

The requirements section says that you have to print out the input lines out
in alphabetical order, and to do that you will need to sort them. To sort data
means to place it in some order, alphabetical in this case. The sorting is the big
deal on this project. All the other stuff is just decoration.

There are a vast number of different algorithms for sorting data. Some are
easier to understand than others, and some require language features we don’t
have yet. Since I need to show you an algorithm that is easy to understand and
that is also possible to implement with what we know now, I have a choice of
straight insertion or bubble sorting.

4.1 The Straight Insertion Sort

The straight insertion sort is familiar to you already: It’s how you sort a deck of
cards into order. To sort a deck of cards, you keep two piles: One pile initially
has all the cards in it; it’s called the source pile. The other pile is initially
empty; that’s the destination pile. To sort the deck, hunt through the source
pile until you find the lowest card—say 2&. Take that card out and put it in the
destination pile. Now find the lowest card that’s left in the source pile—that’ll
be 3&. Take it out and put it on the destination pile. Continue in this way
until you’ve taken the last card, the A&, from the source pile and put it on the
destination pile. Now the destination pile is sorted.

To do this with elements of an array is not much different. You have a source
array, which initially contains the data you want to sort, and a destination array
of the same size. Find the smallest element in the source array. Move it to the
first empty space in the destination array; this involves copying the element
from the source to the destination, and also obliterating it in the source so that
you don’t find it again next time. Repeat this until all the elements are moved
from the source to the destination; at this point all the source elements have
been obliterated, but copies are in the destination array in sorted order.



4.2 The Bubble Sort

The bubble sort is often maligned and a little less familiar than the straight
insertion sort, but it’s really no worse, and it has the advantage that it doesn’t
require an extra destination array.

Lay out a dime, a nickel, a quarter, a penny and a bean, in that order, on the
table, and follow along with the description. We’ll sort these things into order
by value, so that the bean, which is worthless, is on the left, and the quarter is
on the right.

Compare the leftmost two coins, the first and second ones. If they’re in the
correct order, do nothing. Otherwise, swap their positions. Then compare the
second and third coins and switch them if they’re out of order. Continue doing
this until you compare the last two coins, which should be the quarter and the
bean.

Each time we compared two coins, the greater one wound up on the right
and we used it in the next comparison. Somewhere along the line we compared
something with the quarter, and the quarter appeared in all the comparisons
after that; it kept ‘bubbling’ over to the right. The quarter is now in the
rightmost position of the line of coins, which is where it should be.

Now repeat the process. The dime will bubble right to the correct position.
Repeat it again, and the nickel will move to the correct position. Each time we
run through the coins, at least one coin will bubble into the correct position.
Therefore, if there are n coins, we needn’t repeat the bubbling process more
than n — 1 times.

4.3 Stupid-Sort

To stupid-sort a pack of cards, throw the cards down the stairs and then gather
them up again. Examine the pack to see if the cards are in order. If they are,
stop. Otherwise, repeat the process.

Stupid-sort is not a reasonable sorting algorithm, because you have to throw
the cards down the stairs about 8 - 107 times before it works.

4.4 What Sort to Use

You can use any reasonable sorting algorithm you like, including the bubble sort
or the straight insertion sort. You may not use stupid-sort. If you want to use
some algorithm not discussed here, it would probably be a good idea to discuss
it with me first, but you don’t have to.



