Assignment #3

Due Date: Thursday, 6 August, 1992

28 July 1992

You will write a program which reads arithmetic expressions, evaluates them,
and prints the result.

1 Requirements

Your program will implement a reverse Polish notation calculator. The program
will read from the standard input. Your program will compute the values of all
expressions entered. Expressions will consist of integers and operators. Your
program will recognize the operators +, -, *, /, and %. Furthermore, your
program will print out the most recently computed result when it sees the
operator =. Your program will discard the most recently computed result when
it sees the operator ..

Your program will not place any arbitrary limits on the complexity of the
expressions the user can evaluate. Your program will handle error conditions
as gracefully as possible and will print appropriate error messages if memory is
exhausted or if the expression the user enters contains an error.

1.1 Example

Indented lines represent user input; other lines represent output.



6

4 + =
10

7 - =
3

56 %=+ =
30
33

12 3 * =
36
33

12 12 12 % * 1 + =
1729
33

(stack empty)

2 What to Hand in

You should hand in a disk with your source code and an executable, and any
special instructions to me. You may choose to supply a log file that demonstrates
your program, if you like. I will not accept paper copies of solutions to this
assignment.

3 Assignment-Specific Points

I will award seven points for a working RPN calculator, and seven points for
arranging that the calculator can handle arbitrarily complicated expressions.



4 About Reverse Polish Notation

Evaluating ordinary arithmetic expressions is a pain, because you don’t get
to evaluate things in the order they’re entered. To evaluate the expression
4 x (3+7 -6 * 2) + 11you have to skip forward to the part in the paren-
theses, then skip back; you can’t evaluate it from left to right.

Fortunately there is an easier way, adopted by programming language de-
signers, calculator manufacturers, logicians, and us. We will require that our
expressions be entered in reverse Polish notation. What this means is that
instead of each operator coming between the two quantities it’s supposed to
operate on (which is ambiguous), each operator follows the two quantities it’s
supposed to operate on.

A reverse Polish notation expression, therefore, is either just a number, or
two simpler expressions followed by an operator symbol, which says how to
combine the values of the two expressions. For example:

e The value of 2 3 +is 5.
e The value of 3 4 *is 12.

e The value of 2 3 + 3 4 * + is 17; the final + says to evaluate the two
expressions (2 3 + and 3 4 *) that came before and add their values
together.

e The value of 2 3 + 4 * is 20; the final * says to take the values of the
two preceding expressions, 2 3 + and 4, and multiply them.

e The value of 2 3 4 * + is 14; the final + says to take the values of the
two preceding expressions, 2 and 3 4 *, and add them.

Issues of precedence and parenthesization disappear, because it’s no longer
ambiguous where a subexpression ends, and therefore it’s clear what the operands
of each operator symbol are. Every expression and sub-expression ends with an
operator symbol.

Reverse polish notation is great for calculators because you get to write the
operators in the order that the operations are actually performed. If you heed
to compute two quantities, £ and y, and add them together, then you first
compute z, then compute y, and then do the addition—of course it’s absurd to
say you want to do the addition before you’ve computed y; that’s impossible.
Reverse Polish notation lets you actually write the expressions in the order
they’re computed: z y + means ‘compute x; then compute y; then add those
two values.’



Since the operations in an RPN expression are written in the order that they
actually have to be performed, it turns out that interpreting and evaluating
these expressions is very easy. There’s a natural way to implement an RPN
calculator, which is the subject of the next section.

5 Stacks

The name stack is supposed to make you think of those stacks of plates with
springs underneath that you sometimes find in cafeterias. The spring is under
a whole stack of plates, but it keeps them at the right height so that only the
top plate is visible. You can only see the top plate; you can only remove the
top plate; but when you take the top plate off, the plate just below it appears
and then you can examine or remove that plate. When you put a new plate on
top, it obscures the plate that used to be visible.

So a stack is a data structure that has two operations defined on it: You can
pop the stack; that means you take the top element off the stack and examine
it; the element under the top element becomes the new top. We also speak of
popping the top element itself. You can also push a new element onto the stack.
If you push foo onto a stack and then push bar, bar is on the top of the stack
and foo is under that; if you pop the stack you get bar, and then if you pop
it again you get foo. The only way to examine the data at the bottom of the
stack is to pop off everything else above it. If you try to pop the stack when
the stack is empty, you get an error.

It turns out that a stack is just the thing for implementing an RPN calcula-
tor. The rules are simple:

1. Read the input from left to right.
2. If you see a number, push it onto the stack.

3. If you see an operator, pop the right number of operands off the stack,
operate on them, and push the result on the stack.

For example, let’s say the user enters the expression 2 3 * 4 +. We should
compute the value 10. What do we do? First, we see 2, so we push that on the
stack; then we push the 3 after it. Then we see the *, so we pop the 3 and the
2 from the stack, multiply them, and push the result, 6. Then we push the 4;
the stack now contains a 6 and a 4 with the 4 at the top. Then we see the +;
we pop the 6 and the 4, add them, and push the result, 10, back on the stack.
The top of the stack now contains the result 10, which was the value we wanted
to compute.



Let’s do another example: 2 3 4 + *. We see the 2, the 3, and the 4, and
push them on the stack in that order, so that the 4 is at the top and the 2 is at
the bottom. Then we see the +; we pop the top two elements (The 4 and the
3 off the stack, add them, and push the result, 7, back on the stack. The stack
now contains two elements, 2 and 7, with the 7 on top. Then we see the *, pop
the two elements off the stack, multiply them, and push the result, 14, back on.
The top [of the stack now contains the value 14, which is what we wanted to
compute.

5.1 A Simple Implementation of a Stack

Here’s code that implements a stack of <int>s and two functions for pushing
and popping.

#define MAXDEPTH 100 /* Stack can contain up to 100 integers */

int stack[MAXDEPTH];
int stackpointer = 0; /* Index of next empty stack element */

int pop(void)

{
if (stackpointer == 0) { /* Stack is empty */
fprintf (stderr, "The stack is empty!\n");
exit(1);
}

return stack[--stackpointer];

}

void push(int val)

{
if (stackpointer > MAXDEPTH) { /* Stack is full */
fprintf (stderr, "Stack overflow!\n");
exit(1);
}

stack[stackpointer++] = val;

}



Unfortunately, this is a little too simple. This program terminates if the user
tries to make the stack too deep by computing too many intermediate results.
Your program will not have this problem. We will arrange for our stack to grow
as large as necessary, until the computer runs out of memory. Probably the
simplest way to do this is to implement your stack as a linked list.

If we don’t discuss linked lists in class by the end of the 29th of July, please
mention it to me and I’ll hand out detailed information about them on the 30th.



